Summary
A minimally conscious state or MCS is a disorder of consciousness distinct from persistent vegetative state and locked-in syndrome. Unlike persistent vegetative state, patients with MCS have partial preservation of conscious awareness. MCS is a relatively new category of disorders of consciousness. The natural history and longer term outcome of MCS have not yet been thoroughly studied. The prevalence of MCS was estimated to be 9 times of PVS cases (adult and pediatric), or between 112,000 and 280,000 in the US by year 2000. Because minimally conscious state is a relatively new criterion for diagnosis, there are very few functional imaging studies of patients with this condition. Preliminary data has shown that overall cerebral metabolism is less than in those with conscious awareness (20–40% of normal) and is slightly higher but comparable to those in vegetative states. Activation in the medial parietal cortex and adjacent posterior cingulate cortex are brain regions that seem to differ between patients in MCS and those from vegetative states. These areas are most active during periods of conscious waking and are least active when in altered states of consciousness, such as general anesthesia, propofol, hypnotic state, dementia, and Wernicke–Korsakoff syndrome. Auditory stimulation induced more widespread activation in the primary and pre-frontal associative areas of MCS patients than vegetative state patients. There were also more cortiocortical functional connectivity between the auditory cortex and a large network of temporal and prefrontal cortices in MCS than vegetative states. These findings encourage treatments based on neuromodulatory and cognitive revalidation therapeutic strategies for patients with MCS. One study used diffusion tensor imaging (DTI) in two case studies. They found that there were widespread cerebral atrophy in both patients. The lateral ventricles were increased in size, and the corpus callosum and the periventricular white matter were diminished.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
NX-436: Advanced methods for human neuromodulation
Neuromodulation is an expending field especially in human translational neuroscience and neurotechnology. This course will introduce to different approaches / technologies for neuromodulation, their u
BIO-641: Data Science applications in Neuroimaging
Attention: it is also necessary to register at https://tinyurl.com/edsan2022 in addition to signing up for the course. The "Examples of Data Science Applications in Neuroimaging" (EDSAN) course i
Related publications (35)