Negative refraction is the electromagnetic phenomenon where light rays become refracted at an interface that is opposite to their more commonly observed positive refractive properties. Negative refraction can be obtained by using a metamaterial which has been designed to achieve a negative value for (electric) permittivity (ε) and (magnetic) permeability (μ); in such cases the material can be assigned a negative refractive index. Such materials are sometimes called "double negative" materials.
Negative refraction occurs at interfaces between materials at which one has an ordinary positive phase velocity (i.e., a positive refractive index), and the other has the more exotic negative phase velocity (a negative refractive index).
Negative phase velocity (NPV) is a property of light propagation in a medium. There are different definitions of NPV; the most common is Victor Veselago's original proposal of opposition of the wave vector and (Abraham) the Poynting vector. Other definitions include the opposition of wave vector to group velocity, and energy to velocity. "Phase velocity" is used conventionally, as phase velocity has the same sign as the wave vector.
A typical criterion used to determine Veselago's NPV is that the dot product of the Poynting vector and wave vector is negative (i.e., that ), but this definition is not covariant. While this restriction is not practically significant, the criterion has been generalized into a covariant form. Veselago NPV media are also called "left-handed (meta)materials", as the components of plane waves passing through (electric field, magnetic field, and wave vector) follow the left-hand rule instead of the right-hand rule. The terms "left-handed" and "right-handed" are generally avoided as they are also used to refer to chiral media.
One can choose to avoid directly considering the Poynting vector and wave vector of a propagating light field, and instead directly consider the response of the materials. Assuming the material is achiral, one can consider what values of permittivity (ε) and permeability (μ) result in negative phase velocity (NPV).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Negative-index metamaterial or negative-index material (NIM) is a metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range. NIMs are constructed of periodic basic parts called unit cells, which are usually significantly smaller than the wavelength of the externally applied electromagnetic radiation. The unit cells of the first experimentally investigated NIMs were constructed from circuit board material, or in other words, wires and dielectrics.
Metamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized (electrically small) antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space. However, this class of antenna incorporates metamaterials, which are materials engineered with novel, often microscopic, structures to produce unusual physical properties. Antenna designs incorporating metamaterials can step-up the antenna's radiated power.
A tunable metamaterial is a metamaterial with a variable response to an incident electromagnetic wave. This includes remotely controlling how an incident electromagnetic wave (EM wave) interacts with a metamaterial. This translates into the capability to determine whether the EM wave is transmitted, reflected, or absorbed. In general, the lattice structure of the tunable metamaterial is adjustable in real time, making it possible to reconfigure a metamaterial device during operation.
We introduce a Lamb-wave medium with tunable propagation velocities, which are controlled by a two-dimensional heating pattern produced by a laser beam. We utilized it to demonstrate that waves in an appropriately designed medium can propagate in the form ...
2024
, , ,
Magnonics is a budding research field in nanomagnetism and nanoscience that addresses the use of spin waves (magnons) to transmit, store, and process information. The rapid advancements of this field during last one decade in terms of upsurge in research p ...
2021
, ,
In-plane permeability of small area (100 × 50 mm) alumina fiber woven fabrics grafted with aligned carbon nanotubes (CNT) was quantified by placing them in series with a glass mat of known permeability during a flow experiment. The methodology was first va ...