Summary
Negative-index metamaterial or negative-index material (NIM) is a metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range. NIMs are constructed of periodic basic parts called unit cells, which are usually significantly smaller than the wavelength of the externally applied electromagnetic radiation. The unit cells of the first experimentally investigated NIMs were constructed from circuit board material, or in other words, wires and dielectrics. In general, these artificially constructed cells are stacked or planar and configured in a particular repeated pattern to compose the individual NIM. For instance, the unit cells of the first NIMs were stacked horizontally and vertically, resulting in a pattern that was repeated and intended (see below images). Specifications for the response of each unit cell are predetermined prior to construction and are based on the intended response of the entire, newly constructed, material. In other words, each cell is individually tuned to respond in a certain way, based on the desired output of the NIM. The aggregate response is mainly determined by each unit cell's geometry and substantially differs from the response of its constituent materials. In other words, the way the NIM responds is that of a new material, unlike the wires or metals and dielectrics it is made from. Hence, the NIM has become an effective medium. Also, in effect, this metamaterial has become an “ordered macroscopic material, synthesized from the bottom up”, and has emergent properties beyond its components. Metamaterials that exhibit a negative value for the refractive index are often referred to by any of several terminologies: left-handed media or left-handed material (LHM), backward-wave media (BW media), media with negative refractive index, double negative (DNG) metamaterials, and other similar names. Electrodynamics of media with negative indices of refraction were first studied by Russian theoretical physicist Victor Veselago from Moscow Institute of Physics and Technology in 1967.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
EE-624: Advanced electromagnetics
In this advanced electromagnetics course, you will develop a solid theoretical understanding of wave-matter interactions in natural materials and artificially structured photonic media and devices.
MICRO-420: Selected topics in advanced optics
This course proposes a selection of different facets of modern optics and photonics.
PHYS-501: Nonlinear Optics
Basic principles of optics
Show more