Concept

Stirling numbers of the second kind

Related concepts (18)
Dobiński's formula
In combinatorial mathematics, Dobiński's formula states that the n-th Bell number Bn (i.e., the number of partitions of a set of size n) equals where denotes Euler's number. The formula is named after G. Dobiński, who published it in 1877. In the setting of probability theory, Dobiński's formula represents the nth moment of the Poisson distribution with mean 1. Sometimes Dobiński's formula is stated as saying that the number of partitions of a set of size n equals the nth moment of that distribution.
Stirling numbers of the first kind
In mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles (counting fixed points as cycles of length one). The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the first kind.
Inclusion–exclusion principle
In combinatorics, a branch of mathematics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as where A and B are two finite sets and |S | indicates the cardinality of a set S (which may be considered as the number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice.
Factorial moment
In probability theory, the factorial moment is a mathematical quantity defined as the expectation or average of the falling factorial of a random variable. Factorial moments are useful for studying non-negative integer-valued random variables, and arise in the use of probability-generating functions to derive the moments of discrete random variables. Factorial moments serve as analytic tools in the mathematical field of combinatorics, which is the study of discrete mathematical structures.
Lah number
In mathematics, the (signed and unsigned) Lah numbers are coefficients expressing rising factorials in terms of falling factorials and vice-versa. They were discovered by Ivo Lah in 1954. Explicitly, the unsigned Lah numbers are given by the formula involving the binomial coefficient for . Unsigned Lah numbers have an interesting meaning in combinatorics: they count the number of ways a set of elements can be partitioned into nonempty linearly ordered subsets. Lah numbers are related to Stirling numbers.
Symbolic method (combinatorics)
In combinatorics, the symbolic method is a technique for counting combinatorial objects. It uses the internal structure of the objects to derive formulas for their generating functions. The method is mostly associated with Philippe Flajolet and is detailed in Part A of his book with Robert Sedgewick, Analytic Combinatorics, while the rest of the book explains how to use complex analysis in order to get asymptotic and probabilistic results on the corresponding generating functions.
Bell number
In combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy, they are named after Eric Temple Bell, who wrote about them in the 1930s. The Bell numbers are denoted , where is an integer greater than or equal to zero. Starting with , the first few Bell numbers are 1, 1, 2, 5, 15, 52, 203, 877, 4140, ... .
Stirling number
In mathematics, Stirling numbers arise in a variety of analytic and combinatorial problems. They are named after James Stirling, who introduced them in a purely algebraic setting in his book Methodus differentialis (1730). They were rediscovered and given a combinatorial meaning by Masanobu Saka in 1782. Two different sets of numbers bear this name: the Stirling numbers of the first kind and the Stirling numbers of the second kind. Additionally, Lah numbers are sometimes referred to as Stirling numbers of the third kind.
Bell polynomials
In combinatorial mathematics, the Bell polynomials, named in honor of Eric Temple Bell, are used in the study of set partitions. They are related to Stirling and Bell numbers. They also occur in many applications, such as in the Faà di Bruno's formula. The partial or incomplete exponential Bell polynomials are a triangular array of polynomials given by where the sum is taken over all sequences j1, j2, j3, ..., jn−k+1 of non-negative integers such that these two conditions are satisfied: The sum is called the nth complete exponential Bell polynomial.
Generating function
In mathematics, a generating function is a way of encoding an infinite sequence of numbers (an) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.