Formule de DobińskiEn combinatoire, la formule de Dobiński donne une expression du nombre de Bell de rang n (c'est-à-dire du nombre de partitions d'un ensemble de taille n) sous forme de somme de série : La formule porte le nom de G. Dobiński, qui l'a publiée en 1877. Dans le cadre de la théorie des probabilités, la formule de Dobiński exprime le n-ième moment de la loi de Poisson de moyenne 1. Parfois, la formule de Dobiński est énoncée comme disant que le nombre de partitions d'un ensemble de taille n est égal au n-ième moment de cette loi.
Stirling numbers of the first kindIn mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles (counting fixed points as cycles of length one). The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the first kind.
Principe d'inclusion-exclusionthumb|Exemple d'inclusion-exclusion à partir de trois ensembles. En combinatoire, le principe d’inclusion-exclusion permet d’exprimer le nombre d’éléments (ou cardinal) d'une réunion finie d'ensembles finis en fonction du nombre d'éléments de ces ensembles et de leurs intersections. Il se généralise en termes de probabilités. Il est attribué au mathématicien Abraham de Moivre, et connu également (lui ou sa version probabiliste) sous le nom de formule du crible de Poincaré, formule de Poincaré, ou formule du crible.
Moment factorielEn mathématiques et plus particulièrement en théorie des probabilités, le moment factoriel désigne l'espérance de la factorielle décroissante d'une variable aléatoire. Les moments factoriels sont utiles dans l'étude de variables aléatoires à valeurs dans l'ensemble des entiers naturels. Les moments factoriels sont aussi utilisés dans le domaine mathématique de la combinatoire, pour étudier des structures mathématiques discrètes.
Nombre de LahEn mathématiques, les nombres de Lah, établis par , permettent d’exprimer les factorielles croissantes en fonction des factorielles décroissantes et réciproquement. Les nombres de Lah (signés) L(n, k) () sont définis par : avec la factorielle croissante et la factorielle décroissante, d’où : On montre (voir section #Expression directe ci-dessous) que L(n, k) a pour signe (-1). De même que pour les nombres de Stirling de première espèce, la notation de Karamata–Knuth désigne la version non signée des nombres de Lah () : d’où : avec (symbole de Kronecker).
Combinatoire analytiqueEn mathématiques, et plus précisément en combinatoire, la combinatoire analytique (en analytic combinatorics) est un ensemble de techniques décrivant des problèmes combinatoires dans le langage des séries génératrices, et s'appuyant en particulier sur l'analyse complexe pour obtenir des résultats asymptotiques sur les objets combinatoires initiaux. Les résultats de combinatoire analytique permettent notamment une analyse fine de la complexité de certains algorithmes.
Nombre de BellEn mathématiques, le n-ième nombre de Bell (du nom de Eric Temple Bell) est le nombre de partitions d'un ensemble à n éléments distincts ou, ce qui revient au même, le nombre de relations d'équivalence sur un tel ensemble. Ces nombres forment la suite d'entiers de l'OEIS, dont on peut calculer à la main les premiers termes :Le premier vaut 1 car il existe exactement une partition de l'ensemble vide : la partition vide, formée d'aucune partie. En effet, ses éléments (puisqu'il n'y en a aucun) sont bien non vides et disjoints deux à deux, et de réunion vide.
Nombre de StirlingEn mathématiques, les nombres de Stirling apparaissent dans plusieurs problèmes combinatoires. Ils tirent leur nom de James Stirling, qui les a introduits au . Il en existe trois sortes, nommés les nombres de Stirling de première espèce signés et non signés, et les nombres de Stirling de seconde espèce. Diverses notations sont utilisées pour les nombres de Stirling, parmi lesquelles : nombres de Stirling de première espèce « signés » : nombres de Stirling de première espèce « non signés » : nombres de Stirling de seconde espèce : La notation avec crochets, analogue à celle utilisée pour les coefficients binomiaux, est due à Jovan Karamata, qui l'a proposée en 1935.
Polynôme de BellEn mathématiques, et plus précisément en combinatoire, un polynôme de Bell, nommé ainsi d'après le mathématicien Eric Temple Bell, est défini par: où la somme porte sur toutes les suites j1, j2, j3, ..., jn−k+1 d'entiers naturels telles que : et La somme est parfois appelée n-ème polynôme de Bell complet, et alors les polynômes B définis ci-dessus sont appelés des polynômes de Bell « partiels ». Les polynômes de Bell complets B peuvent être exprimés par le déterminant d’une matrice : avec δ le symbole de Kronecker.
Série génératriceEn mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.