Summary
A chi-squared test (also chi-square or χ2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables (two dimensions of the contingency table) are independent in influencing the test statistic (values within the table). The test is valid when the test statistic is chi-squared distributed under the null hypothesis, specifically Pearson's chi-squared test and variants thereof. Pearson's chi-squared test is used to determine whether there is a statistically significant difference between the expected frequencies and the observed frequencies in one or more categories of a contingency table. For contingency tables with smaller sample sizes, a Fisher's exact test is used instead. In the standard applications of this test, the observations are classified into mutually exclusive classes. If the null hypothesis that there are no differences between the classes in the population is true, the test statistic computed from the observations follows a χ2 frequency distribution. The purpose of the test is to evaluate how likely the observed frequencies would be assuming the null hypothesis is true. Test statistics that follow a χ2 distribution occur when the observations are independent. There are also χ2 tests for testing the null hypothesis of independence of a pair of random variables based on observations of the pairs. Chi-squared tests often refers to tests for which the distribution of the test statistic approaches the χ2 distribution asymptotically, meaning that the sampling distribution (if the null hypothesis is true) of the test statistic approximates a chi-squared distribution more and more closely as sample sizes increase. In the 19th century, statistical analytical methods were mainly applied in biological data analysis and it was customary for researchers to assume that observations followed a normal distribution, such as Sir George Airy and Mansfield Merriman, whose works were criticized by Karl Pearson in his 1900 paper.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
MATH-233: Probability and statistics
Le cours fournit une initiation à la théorie des probabilités et aux méthodes statistiques pour physiciens.
CS-411: Digital education
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies on this topic: do stud
MATH-236: Probability and statistics II
Linear statistical methods, analysis of experiments, logistic regression.
Show more