Summary
A current source is an electronic circuit that delivers or absorbs an electric current which is independent of the voltage across it. A current source is the dual of a voltage source. The term current sink is sometimes used for sources fed from a negative voltage supply. Figure 1 shows the schematic symbol for an ideal current source driving a resistive load. There are two types. An independent current source (or sink) delivers a constant current. A dependent current source delivers a current which is proportional to some other voltage or current in the circuit. |- align="center" |style="padding: 1em 2em 0;"| |style="padding: 1em 2em 0;"| |- align="center" | Voltage source | Current source |- align="center" |style="padding: 1em 2em 0;"| |style="padding: 1em 2em 0;"| |- align="center" | Controlled voltage source | Controlled current source |- align="center" |style="padding: 1em 2em 0;"| |style="padding: 1em 2em 0;"| |- align="center" | Battery of cells | Single cell An ideal current source generates a current that is independent of the voltage changes across it. An ideal current source is a mathematical model, which real devices can approach very closely. If the current through an ideal current source can be specified independently of any other variable in a circuit, it is called an independent current source. Conversely, if the current through an ideal current source is determined by some other voltage or current in a circuit, it is called a dependent or controlled current source. Symbols for these sources are shown in Figure 2. The internal resistance of an ideal current source is infinite. An independent current source with zero current is identical to an ideal open circuit. The voltage across an ideal current source is completely determined by the circuit it is connected to. When connected to a short circuit, there is zero voltage and thus zero power delivered. When connected to a load resistance, the current source manages the voltage in such a way as to keep the current constant; so in an ideal current source the voltage across the source approaches infinity as the load resistance approaches infinity (an open circuit).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.