Approximation algorithmIn computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time.
Parameterized complexityIn computer science, parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to multiple parameters of the input or output. The complexity of a problem is then measured as a function of those parameters. This allows the classification of NP-hard problems on a finer scale than in the classical setting, where the complexity of a problem is only measured as a function of the number of bits in the input.
Reduction (complexity)In computability theory and computational complexity theory, a reduction is an algorithm for transforming one problem into another problem. A sufficiently efficient reduction from one problem to another may be used to show that the second problem is at least as difficult as the first. Intuitively, problem A is reducible to problem B, if an algorithm for solving problem B efficiently (if it existed) could also be used as a subroutine to solve problem A efficiently. When this is true, solving A cannot be harder than solving B.
P-completeIn computational complexity theory, a decision problem is P-complete (complete for the complexity class P) if it is in P and every problem in P can be reduced to it by an appropriate reduction. The notion of P-complete decision problems is useful in the analysis of: which problems are difficult to parallelize effectively, which problems are difficult to solve in limited space. specifically when stronger notions of reducibility than polytime-reducibility are considered.
Travelling salesman problemThe travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in theoretical computer science and operations research. The travelling purchaser problem and the vehicle routing problem are both generalizations of TSP.
Boolean satisfiability problemIn logic and computer science, the Boolean satisfiability problem (sometimes called propositional satisfiability problem and abbreviated SATISFIABILITY, SAT or B-SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. In other words, it asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE. If this is the case, the formula is called satisfiable.
Graph automorphismIn the mathematical field of graph theory, an automorphism of a graph is a form of symmetry in which the graph is mapped onto itself while preserving the edge–vertex connectivity. Formally, an automorphism of a graph G = (V, E) is a permutation σ of the vertex set V, such that the pair of vertices (u, v) form an edge if and only if the pair (σ(u), σ(v)) also form an edge. That is, it is a graph isomorphism from G to itself. Automorphisms may be defined in this way both for directed graphs and for undirected graphs.
Theoretical computer scienceTheoretical computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory. It is difficult to circumscribe the theoretical areas precisely. The ACM's Special Interest Group on Algorithms and Computation Theory (SIGACT) provides the following description: History of computer science While logical inference and mathematical proof had existed previously, in 1931 Kurt Gödel proved with his incompleteness theorem that there are fundamental limitations on what statements could be proved or disproved.
Dominating setIn graph theory, a dominating set for a graph G is a subset D of its vertices, such that any vertex of G is either in D, or has a neighbor in D. The domination number γ(G) is the number of vertices in a smallest dominating set for G. The dominating set problem concerns testing whether γ(G) ≤ K for a given graph G and input K; it is a classical NP-complete decision problem in computational complexity theory. Therefore it is believed that there may be no efficient algorithm that can compute γ(G) for all graphs G.
Decision problemIn computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question of the input values. An example of a decision problem is deciding by means of an algorithm whether a given natural number is prime. Another is the problem "given two numbers x and y, does x evenly divide y?". The answer is either 'yes' or 'no' depending upon the values of x and y. A method for solving a decision problem, given in the form of an algorithm, is called a decision procedure for that problem.