vignette|Une illustration du théorème des nombres premiers : en rouge, le nombre de nombres premiers inférieurs ou égaux à x ; en vert, une approximation utilisant ; en bleu, une approximation utilisant l'intégrale logarithmique . En mathématiques, et plus précisément en théorie analytique des nombres, le théorème des nombres premiers, démontré indépendamment par Hadamard et La Vallée Poussin en 1896, est un résultat concernant la distribution asymptotique des nombres premiers. Le théorème des nombres premiers équivaut à lorsque donc au comportement asymptotique suivant pour le n-ième nombre premier : Il équivaut aussi à et à puisque chacune des deux fonctions de Tchebychev et , où désigne l'ensemble des nombres premiers, est asymptotiquement équivalente à lorsque . Le théorème des nombres premiers est également équivalent, en un certain sens, à l’assertion selon laquelle la fonction zêta de Riemann ne s’annule pas sur l’abscisse de partie réelle 1 : Un approximant de π(x) nettement meilleur que x/ln(x) est la fonction logarithme intégral li(x) ou sa variante, la fonction d'écart logarithmique intégrale Li(x) : où Voir les sections Histoire et Exemples d'estimations numériques ci-dessous pour des estimations de l'erreur de ces approximations. Le théorème des nombres premiers a été conjecturé dans la marge d'une table de logarithmes par Gauss en 1792 ou 1793 alors qu'il avait seulement 15 ou 16 ans (selon ses propres affirmations ultérieures) et par Adrien-Marie Legendre (ébauche en l'An VI du calendrier républicain, soit 1797-1798, conjecture précise en 1808). Le Russe Pafnouti Tchebychev a établi en 1851 que si x est assez grand, π(x) est compris entre 0,92129x/ln(x) et 1,10556x/ln(x). Le théorème a finalement été démontré indépendamment par Hadamard et La Vallée Poussin en 1896 à l'aide de méthodes d'analyse complexe, utilisant en particulier la fonction ζ de Riemann. En 1899, La Vallée Poussin a affiné son résultat en montrant que (avec la notation O de Landau) pour une certaine constante V.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
MATH-417: Number theory II.b - selected topics
This year's topic is "Additive combinatorics and applications." We will introduce various methods from additive combinatorics, establish the sum-product theorem over finite fields and derive various a
COM-401: Cryptography and security
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
MATH-313: Number theory I.b - Analytic number theory
The aim of this course is to present the basic techniques of analytic number theory.
Afficher plus
Concepts associés (31)
Hypothèse de Riemann
En mathématiques, l'hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien allemand Bernhard Riemann, selon laquelle les zéros non triviaux de la fonction zêta de Riemann ont tous une partie réelle égale à 1/2. Sa démonstration améliorerait la connaissance de la répartition des nombres premiers et ouvrirait des nouveaux domaines aux mathématiques. Cette conjecture constitue l'un des problèmes non résolus les plus importants des mathématiques du début du : elle est l'un des vingt-trois fameux problèmes de Hilbert proposés en 1900, l'un des sept problèmes du prix du millénaire et l'un des dix-huit problèmes de Smale.
Théorie analytique des nombres
droite|vignette|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : les couleurs proches du noir indiquent des valeurs proches de zéro, alors que la teinte code l'argument de la valeur. En mathématiques, la théorie analytique des nombres est une branche de la théorie des nombres qui utilise des méthodes d'analyse mathématique pour résoudre des problèmes concernant les nombres entiers.
Fonction zêta de Riemann
vignette|upright=2|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : des couleurs vives indiquent des valeurs proches de 0 et la nuance indique l'argument de la valeur. Le point blanc pour s = 1 est le pôle ; les points noirs sur l'axe réel négatif (demi-droite horizontale) et sur la droite critique Re(s) = 1/2 (droite verticale) sont les zéros. vignette|upright=2|Carte des couleurs utilisées dans la figure du dessus.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.