Résumé
vignette|Une illustration du théorème des nombres premiers : en rouge, le nombre de nombres premiers inférieurs ou égaux à x ; en vert, une approximation utilisant ; en bleu, une approximation utilisant l'intégrale logarithmique . En mathématiques, et plus précisément en théorie analytique des nombres, le théorème des nombres premiers, démontré indépendamment par Hadamard et La Vallée Poussin en 1896, est un résultat concernant la distribution asymptotique des nombres premiers. Le théorème des nombres premiers équivaut à lorsque donc au comportement asymptotique suivant pour le n-ième nombre premier : Il équivaut aussi à et à puisque chacune des deux fonctions de Tchebychev et , où désigne l'ensemble des nombres premiers, est asymptotiquement équivalente à lorsque . Le théorème des nombres premiers est également équivalent, en un certain sens, à l’assertion selon laquelle la fonction zêta de Riemann ne s’annule pas sur l’abscisse de partie réelle 1 : Un approximant de π(x) nettement meilleur que x/ln(x) est la fonction logarithme intégral li(x) ou sa variante, la fonction d'écart logarithmique intégrale Li(x) : où Voir les sections Histoire et Exemples d'estimations numériques ci-dessous pour des estimations de l'erreur de ces approximations. Le théorème des nombres premiers a été conjecturé dans la marge d'une table de logarithmes par Gauss en 1792 ou 1793 alors qu'il avait seulement 15 ou 16 ans (selon ses propres affirmations ultérieures) et par Adrien-Marie Legendre (ébauche en l'An VI du calendrier républicain, soit 1797-1798, conjecture précise en 1808). Le Russe Pafnouti Tchebychev a établi en 1851 que si x est assez grand, π(x) est compris entre 0,92129x/ln(x) et 1,10556x/ln(x). Le théorème a finalement été démontré indépendamment par Hadamard et La Vallée Poussin en 1896 à l'aide de méthodes d'analyse complexe, utilisant en particulier la fonction ζ de Riemann. En 1899, La Vallée Poussin a affiné son résultat en montrant que (avec la notation O de Landau) pour une certaine constante V.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.