Summary
In the mathematical field of geometric topology, the Poincaré conjecture (UKˈpwæ̃kæreɪ, USˌpwæ̃kɑːˈreɪ, pwɛ̃kaʁe) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured by Henri Poincaré in 1904, the theorem concerns spaces that locally look like ordinary three-dimensional space but which are finite in extent. Poincaré hypothesized that if such a space has the additional property that each loop in the space can be continuously tightened to a point, then it is necessarily a three-dimensional sphere. Attempts to resolve the conjecture drove much progress in the field of geometric topology during the 20th century. The eventual proof built upon Richard S. Hamilton's program of using the Ricci flow to solve the problem. By developing a number of new techniques and results in the theory of Ricci flow, Grigori Perelman was able to modify and complete Hamilton's program. In papers posted to the arXiv repository in 2002 and 2003, Perelman presented his work proving the Poincaré conjecture (and the more powerful geometrization conjecture of William Thurston). Over the next several years, several mathematicians studied his papers and produced detailed formulations of his work. Hamilton and Perelman's work on the conjecture is widely recognized as a milestone of mathematical research. Hamilton was recognized with the Shaw Prize and the Leroy P. Steele Prize for Seminal Contribution to Research. The journal Science marked Perelman's proof of the Poincaré conjecture as the scientific Breakthrough of the Year in 2006. The Clay Mathematics Institute, having included the Poincaré conjecture in their well-known Millennium Prize Problem list, offered Perelman their prize of US$1 million for the conjecture's resolution. He declined the award, saying that Hamilton's contribution had been equal to his own.cite web |date=July 1, 2010 |title=Последнее "нет" доктора Перельмана |trans-title=The last "no" Dr.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.