Radiative equilibrium is the condition where the total thermal radiation leaving an object is equal to the total thermal radiation entering it. It is one of the several requirements for thermodynamic equilibrium, but it can occur in the absence of thermodynamic equilibrium. There are various types of radiative equilibrium, which is itself a kind of dynamic equilibrium. Equilibrium, in general, is a state in which opposing forces are balanced, and hence a system does not change in time. Radiative equilibrium is the specific case of thermal equilibrium, for the case in which the exchange of heat is done by radiative heat transfer. There are several types of radiative equilibrium. An important early contribution was made by Pierre Prevost in 1791. Prevost considered that what is nowadays called the photon gas or electromagnetic radiation was a fluid that he called "free heat". Prevost proposed that free radiant heat is a very rare fluid, rays of which, like light rays, pass through each other without detectable disturbance of their passage. Prevost's theory of exchanges stated that each body radiates to, and receives radiation from, other bodies. The radiation from each body is emitted regardless of the presence or absence of other bodies. Prevost in 1791 offered the following definitions (translated): Absolute equilibrium of free heat is the state of this fluid in a portion of space which receives as much of it as it lets escape. Relative equilibrium of free heat is the state of this fluid in two portions of space which receive from each other equal quantities of heat, and which moreover are in absolute equilibrium, or experience precisely equal changes. Prevost went on to comment that "The heat of several portions of space at the same temperature, and next to one another, is at the same time in the two species of equilibrium." Following Planck (1914), a radiative field is often described in terms of specific radiative intensity, which is a function of each geometrical point in a space region, at an instant of time.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
ME-465: Advanced heat transfer
The course will deepen the fundamentals of heat transfer. Particular focus will be put on radiative and convective heat transfer, and computational approaches to solve complex, coupled heat transfer p
PHYS-323: Astrophysics II
Ce cours est une introduction à la physique stellaire. On y expose les notions indispensables à la compréhension du fonctionnement d'une étoile et à la construction de modèles de structure interne et
AR-241: Building technology III
Ce cours traite des divers domaines techniques intervenant dans la conception et la réalisation d'un bâtiment, soit : physique du bâtiment, structures, matériaux, construction et installations techniq
Show more
Related lectures (54)
Radiative Exchange in Heat Transfer: View Factors and Properties
Discusses radiative exchange principles, focusing on view factors and their applications in heat transfer calculations.
View Factor Algebra
Covers the evaluation of view factors using reciprocity laws and additive property.
Monte Carlo Method: Thermal Radiation
Explores the Monte Carlo method for thermal radiation, covering radiative energy bundles, flux, surface relations, view factors, and radiative exchange computation.
Show more
Related publications (55)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.