Summary
DISPLAYTITLE:SN2 reaction The SN2 reaction is a type of reaction mechanism that is common in organic chemistry. In this mechanism, one bond is broken and one bond is formed in a concerted way, i.e., in one step. The name SN2 refers to the Hughes-Ingold symbol of the mechanism: "SN" indicates that the reaction is a nucleophilic substitution, and "2" that it proceeds via a bi-molecular mechanism, which means both the reacting species are involved in the rate-determining step. The other major type of nucleophilic substitution is the SN1, but many other more specialized mechanisms describe substitution reactions. The SN2 reaction can be considered as an analogue of the associative substitution in the field of inorganic chemistry. The reaction most often occurs at an aliphatic sp3 carbon center with an electronegative, stable leaving group attached to it (often denoted X), which is frequently a halide atom. The breaking of the C–X bond and the formation of the new bond (often denoted C–Y or C–Nu) occur simultaneously through a transition state in which a carbon under nucleophilic attack is pentacoordinate, and approximately sp2 hybridised. The nucleophile attacks the carbon at 180° to the leaving group, since this provides the best overlap between the nucleophile's lone pair and the C–X σ* antibonding orbital. The leaving group is then pushed off the opposite side and the product is formed with inversion of the tetrahedral geometry at the central atom. If the substrate under nucleophilic attack is chiral, then this often leads to inversion of configuration (stereochemistry), called a Walden inversion. In an example of the SN2 reaction, the attack of Br− (the nucleophile) on an ethyl chloride (the electrophile) results in ethyl bromide, with chloride ejected as the leaving group. If the molecule that is undergoing SN2 reaction has a chiral centre, then it is possible that the optical activity of the product would be different from that of the reactant. In an example, 1-bromo-1-fluoroethane can undergo SN2 reaction to form 1-fluoroethan-1-ol, with the nucleophile being an OH− group.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (21)
CH-120: Advanced general chemistry II
Acquisition des notions fondamentales liées à la réactivité des molécules organiques, identification de la structure de petites molécules organiques au moyen des techniques de spectrométrie de masse,
BIO-110: Bio-organic chemistry
The aim of the course is to provide a chemical understanding and intuition to decipher and predict chemical processes in living systems.
MSE-431: Physical chemistry of polymeric materials
The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristic
Show more
Related publications (93)
Related concepts (5)
Reaction mechanism
In chemistry, a reaction mechanism is the step by step sequence of elementary reactions by which overall chemical reaction occurs. A chemical mechanism is a theoretical conjecture that tries to describe in detail what takes place at each stage of an overall chemical reaction. The detailed steps of a reaction are not observable in most cases. The conjectured mechanism is chosen because it is thermodynamically feasible and has experimental support in isolated intermediates (see next section) or other quantitative and qualitative characteristics of the reaction.
Nucleophilic substitution
In chemistry, a nucleophilic substitution is a class of chemical reactions in which an electron-rich chemical species (known as a nucleophile) replaces a functional group within another electron-deficient molecule (known as the electrophile). The molecule that contains the electrophile and the leaving functional group is called the substrate.R. A. Rossi, R. H. de Rossi, Aromatic Substitution by the SRN1 Mechanism, ACS Monograph Series No. 178, American Chemical Society, 1983. .
Substitution reaction
A substitution reaction (also known as single displacement reaction or single substitution reaction) is a chemical reaction during which one functional group in a chemical compound is replaced by another functional group. Substitution reactions are of prime importance in organic chemistry. Substitution reactions in organic chemistry are classified either as electrophilic or nucleophilic depending upon the reagent involved, whether a reactive intermediate involved in the reaction is a carbocation, a carbanion or a free radical, and whether the substrate is aliphatic or aromatic.
Show more