In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field.
Hilbert is credited as one of pioneers of the notion of a class field. However, this notion was already familiar to Kronecker and it was actually Weber who coined the term before Hilbert's fundamental papers came out. The relevant ideas were developed in the period of several decades, giving rise to a set of conjectures by Hilbert that were subsequently proved by Takagi and Artin (with the help of Chebotarev's theorem).
One of the major results is: given a number field F, and writing K for the maximal abelian unramified extension of F, the Galois group of K over F is canonically isomorphic to the ideal class group of F. This statement was generalized to the so called Artin reciprocity law; in the idelic language, writing CF for the idele class group of F, and taking L to be any finite abelian extension of F, this law gives a canonical isomorphism
where denotes the idelic norm map from L to F. This isomorphism is named the reciprocity map.
The existence theorem states that the reciprocity map can be used to give a bijection between the set of abelian extensions of F and the set of closed subgroups of finite index of
A standard method for developing global class field theory since the 1930s was to construct local class field theory, which describes abelian extensions of local fields, and then use it to construct global class field theory. This was first done by Emil Artin and Tate using the theory of group cohomology, and in particular by developing the notion of class formations. Later, Neukirch found a proof of the main statements of global class field theory without using cohomological ideas. His method was explicit and algorithmic.
Inside class field theory one can distinguish special class field theory and general class field theory.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is aimed to give students an introduction to the theory of algebraic curves, with an emphasis on the interplay between the arithmetic and the geometry of global fields. One of the principl
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
Galois theory aims at describing the algebraic symmetries of fields. After reviewing the basic material (from the 2nd year course "Ring and Fields") and in particular the Galois correspondence, we wi
Teiji Takagi (高木 貞治 Takagi Teiji, April 21, 1875 – February 28, 1960) was a Japanese mathematician, best known for proving the Takagi existence theorem in class field theory. The Blancmange curve, the graph of a nowhere-differentiable but uniformly continuous function, is also called the Takagi curve after his work on it. He was born in the rural area of the Gifu Prefecture, Japan. He began learning mathematics in middle school, reading texts in English since none were available in Japanese.
In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable if its Galois group is solvable, i.e., if the group can be decomposed into a series of normal extensions of an abelian group. Every finite extension of a finite field is a cyclic extension.
Let X /S be a flat algebraic stack of finite presentation. We define a new & eacute;tale fundamental pro-groupoid pi(1)(X /S), generalizing Grothendieck's enlarged & eacute;tale fundamental group from SGA 3 to the relative situation. When S is of equal pos ...
We prove the non-planarity of a family of 3-regular graphs constructed from the solutions to the Markoff equation x2 + y2 + z2 = xyz modulo prime numbers greater than 7. The proof uses Euler characteristic and an enumeration of the short cycles in these gr ...
Berlin2024
,
We show the Jordan property for regional fundamental groups of klt singularities of fixed dimension. Furthermore, we prove the existence of effective simultaneous index 1 covers for n-dimensional klt singularities. We give an application to the study of lo ...