HomothetyIn mathematics, a homothety (or homothecy, or homogeneous dilation) is a transformation of an affine space determined by a point S called its center and a nonzero number called its ratio, which sends point to a point by the rule for a fixed number . Using position vectors: In case of (Origin): which is a uniform scaling and shows the meaning of special choices for : for one gets the identity mapping, for one gets the reflection at the center, For one gets the inverse mapping defined by .
Skew linesIn three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. Two lines that both lie in the same plane must either cross each other or be parallel, so skew lines can exist only in three or more dimensions. Two lines are skew if and only if they are not coplanar. If four points are chosen at random uniformly within a unit cube, they will almost surely define a pair of skew lines.
Joseph Diez GergonneJoseph Diez Gergonne (19 June 1771 at Nancy, France – 4 May 1859 at Montpellier, France) was a French mathematician and logician. In 1791, Gergonne enlisted in the French army as a captain. That army was undergoing rapid expansion because the French government feared a foreign invasion intended to undo the French Revolution and restore Louis XVI to the throne of France. He saw action in the major battle of Valmy on 20 September 1792. He then returned to civilian life but soon was called up again and took part in the French invasion of Spain in 1794.
Generalised circleIn geometry, a generalized circle, sometimes called a cline or circline, is a straight line or a circle. The natural setting for generalized circles is the extended plane, a plane along with one point at infinity through which every straight line is considered to pass. Given any three distinct points in the extended plane, there exists precisely one generalized circle passing through all three.
Steiner conicThe Steiner conic or more precisely Steiner's generation of a conic, named after the Swiss mathematician Jakob Steiner, is an alternative method to define a non-degenerate projective conic section in a projective plane over a field. The usual definition of a conic uses a quadratic form (see Quadric (projective geometry)). Another alternative definition of a conic uses a hyperbolic polarity. It is due to K. G. C. von Staudt and sometimes called a von Staudt conic.
Beltrami–Klein modelIn geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk (or n-dimensional unit ball) and lines are represented by the chords, straight line segments with ideal endpoints on the boundary sphere. The Beltrami–Klein model is named after the Italian geometer Eugenio Beltrami and the German Felix Klein while "Cayley" in Cayley–Klein model refers to the English geometer Arthur Cayley.
Complex projective planeIn mathematics, the complex projective plane, usually denoted P2(C), is the two-dimensional complex projective space. It is a complex manifold of complex dimension 2, described by three complex coordinates where, however, the triples differing by an overall rescaling are identified: That is, these are homogeneous coordinates in the traditional sense of projective geometry. The Betti numbers of the complex projective plane are 1, 0, 1, 0, 1, 0, 0, .....
Ordered geometryOrdered geometry is a form of geometry featuring the concept of intermediacy (or "betweenness") but, like projective geometry, omitting the basic notion of measurement. Ordered geometry is a fundamental geometry forming a common framework for affine, Euclidean, absolute, and hyperbolic geometry (but not for projective geometry). Moritz Pasch first defined a geometry without reference to measurement in 1882. His axioms were improved upon by Peano (1889), Hilbert (1899), and Veblen (1904).
Brianchon's theoremIn geometry, Brianchon's theorem is a theorem stating that when a hexagon is circumscribed around a conic section, its principal diagonals (those connecting opposite vertices) meet in a single point. It is named after Charles Julien Brianchon (1783–1864). Let be a hexagon formed by six tangent lines of a conic section. Then lines (extended diagonals each connecting opposite vertices) intersect at a single point , the Brianchon point. The polar reciprocal and projective dual of this theorem give Pascal's theorem.
Francesco SeveriFrancesco Severi (13 April 1879 – 8 December 1961) was an Italian mathematician. He was the chair of the committee on Fields Medal on 1936, at the first delivery. Severi was born in Arezzo, Italy. He is famous for his contributions to algebraic geometry and the theory of functions of several complex variables. He became the effective leader of the Italian school of algebraic geometry. Together with Federigo Enriques, he won the Bordin prize from the French Academy of Sciences.