Helmholtz resonance or wind throb is the phenomenon of air resonance in a cavity, such as when one blows across the top of an empty bottle. The name comes from a device created in the 1850s by Hermann von Helmholtz, the Helmholtz resonator, which he used to identify the various frequencies or musical pitches present in music and other complex sounds. Helmholtz described in his 1862 book On the Sensations of Tone an apparatus able to pick out specific frequencies from a complex sound. The Helmholtz resonator, as it is now called, consists of a rigid container of a known volume, nearly spherical in shape, with a small neck and hole in one end and a larger hole in the other end to emit the sound. When the resonator's 'nipple' is placed inside one's ear, a specific frequency of the complex sound can be picked out and heard clearly. In his book Helmholtz explains: When we "apply a resonator to the ear, most of the tones produced in the surrounding air will be considerably damped; but if the proper tone of the resonator is sounded, it brays into the ear most powerfully.... The proper tone of the resonator may even be sometimes heard cropping up in the whistling of the wind, the rattling of carriage wheels, the splashing of water." A set of varied size resonators was sold to be used as discrete acoustic filters for the spectral analysis of complex sounds. There is also an adjustable type, called a universal resonator, which consists of two cylinders, one inside the other, which can slide in or out to change the volume of the cavity over a continuous range. An array of 14 of this type of resonator has been employed in a mechanical Fourier sound analyzer. This resonator can also emit a variable-frequency tone when driven by a stream of air in the "tone variator" invented by William Stern, 1897. When air is forced into a cavity, the pressure inside increases. When the external force pushing the air into the cavity is removed, the higher-pressure air inside will flow out.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
EE-348: Electroacoustics
Ce cours a pour objectif de former les étudiants de section Génie Electrique et Electronique à la conception de systèmes acoustiques, à l'aide d'un formalisme basé sur l'électrotechnique. A la fin du
ME-426: Micro/Nanomechanical devices
In this course we will see an overview of the exciting field of Micro and Nanomechanical systems. We will go over the dfferent scaling laws that dominate the critical parameters, how size affects mat
Related lectures (32)
Electroacoustics: Resonators and Analogies
Explores resonators, acoustic systems, and analogies in electro-mechano-acoustics, covering impedance, admittance, and resonance.
Resonators: Eigenvalue Problem and Single Mode Solutions
Explores resonators' equation of motion, stress effect on frequency, and single mode solutions.
Plasmonic Modes: Bright and Dark
Explores plasmonic bright and dark modes, Lorentzian lineshape, Fano resonances, and coupled oscillators.
Show more
Related publications (41)

Transversal Spurious Mode Suppression in Ultra-Large-Coupling SH0 Acoustic Resonators on YX36 degrees-Cut Lithium Niobate

Luis Guillermo Villanueva Torrijo, Silvan Stettler

This work reports on the design and fabrication of fundamental shear horizontal (SH0) mode acoustic resonators based on a suspended lithium niobate (LNO) film at 1.04 GHz. Due to the large e16 piezoelectric coefficient of YX36 degrees.-cut LNO, fabricated ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

Toward Band n78 Shear Bulk Acoustic Resonators Using Crystalline Y-Cut Lithium Niobate Films With Spurious Suppression

Luis Guillermo Villanueva Torrijo, Soumya Yandrapalli, Victor Plessky

This work presents the study of suspended Y-cut Lithium Niobate shear bulk acoustic resonators for wide band filter applications in the frequency range of 3.5-4.5GHz. The resonators consist of a Lithium Niobate film with Aluminum top interdigitated electro ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

PID-like active impedance control for electroacoustic resonators to design tunable single-degree-of-freedom sound absorbers

Hervé Lissek, Maxime Volery, Xinxin Guo

Sound absorption at low frequencies still remains a challenge in both scientific research and engineering practice. Natural porous materials are ineffective in this frequency range, as well as acoustic resonators which present too narrow bandwidth of absor ...
2022
Show more
Related concepts (3)
Sound
In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the reception of such waves and their perception by the brain. Only acoustic waves that have frequencies lying between about 20 Hz and 20 kHz, the audio frequency range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with wavelengths of to . Sound waves above 20 kHz are known as ultrasound and are not audible to humans.
Resonator
A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator can be either electromagnetic or mechanical (including acoustic). Resonators are used to either generate waves of specific frequencies or to select specific frequencies from a signal. Musical instruments use acoustic resonators that produce sound waves of specific tones.
Resonance
Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillating force is applied at a resonant frequency of a dynamic system, the system will oscillate at a higher amplitude than when the same force is applied at other, non-resonant frequencies. Frequencies at which the response amplitude is a relative maximum are also known as resonant frequencies or resonance frequencies of the system.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.