Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We explore the largely uncharted scattering properties of acoustic systems that are engineered to be invariant under a special kind of space-time symmetry, consisting in taking their mirror image and running time backwards. Known as Parity-Time symmetry, t ...
Internal degrees of freedom and periodic structure are critical requirements in the design of acoustic/elastic metamaterials since they can give rise to extraordinary properties like negative effective mass and stiffness. However, they are challenging to r ...
Invisibility has been a tantalizing concept for mankind over several centuries. With recent developments in metamaterial science and nanotechnology, the possibility of cloaking objects to incoming electromagnetic radiation has been escaping the realm of sc ...
Invisibility has been a tantalizing concept for mankind over several centuries. With recent developments in metamaterial science and nanotechnology, the possibility of cloaking objects to incoming electromagnetic radiation has been escaping the realm of sc ...
We introduce a new mechanism to realize negative refraction and planar focusing using a pair of parity-time symmetric metasurfaces. In contrast to existing solutions that achieve these effects with negative-index metamaterials or phase conjugating surfaces ...
Metamaterials are artificially structured materials possessing exotic electromagnetic or acoustic properties that are not readily available in nature, for instance synthesizing negative, zero, or very large index of refraction. Their exotic features are ty ...
Broadband impedance matching and zero reflection of acoustic waves at a planar interface between two natural materials is a rare phenomenon, unlike its optical counterpart, frequently observed for polarized light incident at the Brewster angle. In this art ...
We propose and theoretically evaluate a plasmonic light trapping solution for thin film photovoltaic devices that comprises a monolayer or a submonolayer of wavelength-scale silver particles. We systematically study the effect of silver particle size using ...
We report the coupling and interaction between shallow donors and microcavities in bulk GaN at THz frequencies. At 4K, the shallow donors lead to an absorption at 23.5 meV (5.7 THz) under optical pumping above the bandgap of GaN. The microcavities are base ...
In the last years, the number of studies carried out in the field of acoustic metamaterials has significantly increased. In year 2009, our group proposed a concept of acoustic composite right/left hand transmission line (CRLH-TL) metamaterial, consisting o ...