Summary
In mathematics, a subring of R is a subset of a ring that is itself a ring when binary operations of addition and multiplication on R are restricted to the subset, and which shares the same multiplicative identity as R. For those who define rings without requiring the existence of a multiplicative identity, a subring of R is just a subset of R that is a ring for the operations of R (this does imply it contains the additive identity of R). The latter gives a strictly weaker condition, even for rings that do have a multiplicative identity, so that for instance all ideals become subrings (and they may have a multiplicative identity that differs from the one of R). With definition requiring a multiplicative identity (which is used in this article), the only ideal of R that is a subring of R is R itself. A subring of a ring (R, +, ∗, 0, 1) is a subset S of R that preserves the structure of the ring, i.e. a ring (S, +, ∗, 0, 1) with S ⊆ R. Equivalently, it is both a subgroup of (R, +, 0) and a submonoid of (R, ∗, 1). The ring and its quotients have no subrings (with multiplicative identity) other than the full ring. Every ring has a unique smallest subring, isomorphic to some ring with n a nonnegative integer (see characteristic). The integers correspond to n = 0 in this statement, since is isomorphic to . The subring test is a theorem that states that for any ring R, a subset S of R is a subring if and only if it is closed under multiplication and subtraction, and contains the multiplicative identity of R. As an example, the ring Z of integers is a subring of the field of real numbers and also a subring of the ring of polynomials Z[X]. If S is a subring of a ring R, then equivalently R is said to be a ring extension of S, written as R/S in similar notation to that for field extensions. Let R be a ring. Any intersection of subrings of R is again a subring of R. Therefore, if X is any subset of R, the intersection of all subrings of R containing X is a subring S of R. S is the smallest subring of R containing X.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood