Ring theoryIn algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.
Module (mathematics)In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication.
Quotient ringIn ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. It is a specific example of a quotient, as viewed from the general setting of universal algebra. Starting with a ring R and a two-sided ideal I in R, a new ring, the quotient ring R / I, is constructed, whose elements are the cosets of I in R subject to special + and ⋅ operations.
Ring of integersIn mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of . The ring of integers is the simplest possible ring of integers. Namely, where is the field of rational numbers. And indeed, in algebraic number theory the elements of are often called the "rational integers" because of this.
Maximal idealIn mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all proper ideals. In other words, I is a maximal ideal of a ring R if there are no other ideals contained between I and R. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields.
Zero ringIn ring theory, a branch of mathematics, the zero ring or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which xy = 0 for all x and y. This article refers to the one-element ring.) In the , the zero ring is the terminal object, whereas the ring of integers Z is the initial object. The zero ring, denoted {0} or simply 0, consists of the one-element set {0} with the operations + and · defined such that 0 + 0 = 0 and 0 · 0 = 0.
Abstract algebraIn mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term abstract algebra was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning.
Field of fractionsIn abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field of rational numbers. Intuitively, it consists of ratios between integral domain elements. The field of fractions of an integral domain is sometimes denoted by or , and the construction is sometimes also called the fraction field, field of quotients, or quotient field of .
Irreducible elementIn algebra, an irreducible element of an integral domain is a non-zero element that is not invertible (that is, is not a unit), and is not the product of two non-invertible elements. The irreducible elements are the terminal elements of a factorization process; that is, they are the factors that cannot be further factorized. The irreducible factors of an element are uniquely defined, up to the multiplication by a unit, if the integral domain is a unique factorization domain.
Primary idealIn mathematics, specifically commutative algebra, a proper ideal Q of a commutative ring A is said to be primary if whenever xy is an element of Q then x or yn is also an element of Q, for some n > 0. For example, in the ring of integers Z, (pn) is a primary ideal if p is a prime number. The notion of primary ideals is important in commutative ring theory because every ideal of a Noetherian ring has a primary decomposition, that is, can be written as an intersection of finitely many primary ideals.