Related concepts (44)
Isotropic line
In the geometry of quadratic forms, an isotropic line or null line is a line for which the quadratic form applied to the displacement vector between any pair of its points is zero. An isotropic line occurs only with an isotropic quadratic form, and never with a definite quadratic form. Using complex geometry, Edmond Laguerre first suggested the existence of two isotropic lines through the point (α, β) that depend on the imaginary unit i: First system: Second system: Laguerre then interpreted these lines as geodesics: An essential property of isotropic lines, and which can be used to define them, is the following: the distance between any two points of an isotropic line situated at a finite distance in the plane is zero.
Orthogonal basis
In mathematics, particularly linear algebra, an orthogonal basis for an inner product space is a basis for whose vectors are mutually orthogonal. If the vectors of an orthogonal basis are normalized, the resulting basis is an orthonormal basis. Any orthogonal basis can be used to define a system of orthogonal coordinates Orthogonal (not necessarily orthonormal) bases are important due to their appearance from curvilinear orthogonal coordinates in Euclidean spaces, as well as in Riemannian and pseudo-Riemannian manifolds.
Intersection form of a 4-manifold
In mathematics, the intersection form of an oriented compact 4-manifold is a special symmetric bilinear form on the 2nd (co)homology group of the 4-manifold. It reflects much of the topology of the 4-manifolds, including information on the existence of a smooth structure. Let M be a closed 4-manifold (PL or smooth). Take a triangulation T of M. Denote by the dual cell subdivision. Represent classes by 2-cycles A and B modulo 2 viewed as unions of 2-simplices of T and of , respectively.
L-theory
In mathematics, algebraic L-theory is the K-theory of quadratic forms; the term was coined by C. T. C. Wall, with L being used as the letter after K. Algebraic L-theory, also known as "Hermitian K-theory", is important in surgery theory. One can define L-groups for any ring with involution R: the quadratic L-groups (Wall) and the symmetric L-groups (Mishchenko, Ranicki). The even-dimensional L-groups are defined as the Witt groups of ε-quadratic forms over the ring R with .

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.