Isotropic lineIn the geometry of quadratic forms, an isotropic line or null line is a line for which the quadratic form applied to the displacement vector between any pair of its points is zero. An isotropic line occurs only with an isotropic quadratic form, and never with a definite quadratic form. Using complex geometry, Edmond Laguerre first suggested the existence of two isotropic lines through the point (α, β) that depend on the imaginary unit i: First system: Second system: Laguerre then interpreted these lines as geodesics: An essential property of isotropic lines, and which can be used to define them, is the following: the distance between any two points of an isotropic line situated at a finite distance in the plane is zero.
Orthogonal basisIn mathematics, particularly linear algebra, an orthogonal basis for an inner product space is a basis for whose vectors are mutually orthogonal. If the vectors of an orthogonal basis are normalized, the resulting basis is an orthonormal basis. Any orthogonal basis can be used to define a system of orthogonal coordinates Orthogonal (not necessarily orthonormal) bases are important due to their appearance from curvilinear orthogonal coordinates in Euclidean spaces, as well as in Riemannian and pseudo-Riemannian manifolds.
Intersection form of a 4-manifoldIn mathematics, the intersection form of an oriented compact 4-manifold is a special symmetric bilinear form on the 2nd (co)homology group of the 4-manifold. It reflects much of the topology of the 4-manifolds, including information on the existence of a smooth structure. Let M be a closed 4-manifold (PL or smooth). Take a triangulation T of M. Denote by the dual cell subdivision. Represent classes by 2-cycles A and B modulo 2 viewed as unions of 2-simplices of T and of , respectively.
L-théorie algébriqueEn mathématiques, la « L-théorie algébrique » est l'équivalent de la K -théorie pour des formes quadratiques. Le terme a été inventé par C. T. C. Wall, qui a utilisé L car c'était la lettre après le K . La théorie L algébrique, également connue sous le nom de « théorie K hermitienne », est importante dans la théorie de la chirurgie. On peut définir des L -groupes pour tout anneau d'involution R : les L -groupes quadratiques (Wall) et les L -groupes symétriques (Mishchenko, Ranicki).