In mathematics, Hurwitz's theorem is a theorem of Adolf Hurwitz (1859–1919), published posthumously in 1923, solving the Hurwitz problem for finite-dimensional unital real non-associative algebras endowed with a positive-definite quadratic form. The theorem states that if the quadratic form defines a homomorphism into the positive real numbers on the non-zero part of the algebra, then the algebra must be isomorphic to the real numbers, the complex numbers, the quaternions, or the octonions. Such algebras, sometimes called Hurwitz algebras, are examples of composition algebras.
The theory of composition algebras has subsequently been generalized to arbitrary quadratic forms and arbitrary fields. Hurwitz's theorem implies that multiplicative formulas for sums of squares can only occur in 1, 2, 4 and 8 dimensions, a result originally proved by Hurwitz in 1898. It is a special case of the Hurwitz problem, solved also in . Subsequent proofs of the restrictions on the dimension have been given by using the representation theory of finite groups and by and using Clifford algebras. Hurwitz's theorem has been applied in algebraic topology to problems on vector fields on spheres and the homotopy groups of the classical groups and in quantum mechanics to the classification of simple Jordan algebras.
A Hurwitz algebra or composition algebra is a finite-dimensional not necessarily associative algebra A with identity endowed with a nondegenerate quadratic form q such that q(a b) = q(a) q(b). If the underlying coefficient field is the reals and q is positive-definite, so that (a, b) = 1/2[q(a + b) − q(a) − q(b)] is an inner product, then A is called a Euclidean Hurwitz algebra or (finite-dimensional) normed division algebra.
If A is a Euclidean Hurwitz algebra and a is in A, define the involution and right and left multiplication operators by
Evidently the involution has period two and preserves the inner product and norm. These operators have the following properties:
the involution is an antiautomorphism, i.e.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In the field of mathematics called abstract algebra, a division algebra is, roughly speaking, an algebra over a field in which division, except by zero, is always possible. Formally, we start with a non-zero algebra D over a field. We call D a division algebra if for any element a in D and any non-zero element b in D there exists precisely one element x in D with a = bx and precisely one element y in D such that a = yb.
In mathematics, a composition algebra A over a field K is a not necessarily associative algebra over K together with a nondegenerate quadratic form N that satisfies for all x and y in A. A composition algebra includes an involution called a conjugation: The quadratic form is called the norm of the algebra. A composition algebra (A, ∗, N) is either a division algebra or a split algebra, depending on the existence of a non-zero v in A such that N(v) = 0, called a null vector. When x is not a null vector, the multiplicative inverse of x is .
In mathematics, the complexification of a vector space V over the field of real numbers (a "real vector space") yields a vector space V^C over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include their scaling ("multiplication") by complex numbers. Any basis for V (a space over the real numbers) may also serve as a basis for V^C over the complex numbers. Let be a real vector space.
Group representation theory studies the actions of groups on vector spaces. This allows the use of linear algebra to study certain group theoretical questions. In this course the groups in question wi
The course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
Covers the essentials of probability, algebras, and conditional probability, including the Borel o-algebra and Poisson processes.
In this text, we will show the existence of lattice packings in a family of dimensions by employing division algebras. This construction is a generalization of Venkatesh's lattice packing result Venkatesh (Int Math Res Notices 2013(7): 1628-1642, 2013). In ...
SPRINGER HEIDELBERG2023
Let k be a field of positive characteristic. Building on the work of the second named author, we define a new class of k-algebras, called diagonally F-regular algebras, for which the so-called Uniform. Symbolic Topology Property (USTP) holds effectively. W ...
2020
Let G be a finite group and (K, O, k) be a p-modular system “large enough”. Let R = O or k. There is a bijection between the blocks of the group algebra RG and the central primitive idempotents (the blocks) of the so-called cohomological Mackey algebra coμ ...