Concept

Composition algebra

In mathematics, a composition algebra A over a field K is a not necessarily associative algebra over K together with a nondegenerate quadratic form N that satisfies for all x and y in A. A composition algebra includes an involution called a conjugation: The quadratic form is called the norm of the algebra. A composition algebra (A, ∗, N) is either a division algebra or a split algebra, depending on the existence of a non-zero v in A such that N(v) = 0, called a null vector. When x is not a null vector, the multiplicative inverse of x is . When there is a non-zero null vector, N is an isotropic quadratic form, and "the algebra splits". Every unital composition algebra over a field K can be obtained by repeated application of the Cayley–Dickson construction starting from K (if the characteristic of K is different from 2) or a 2-dimensional composition subalgebra (if char(K) = 2). The possible dimensions of a composition algebra are 1, 2, 4, and 8. 1-dimensional composition algebras only exist when char(K) ≠ 2. Composition algebras of dimension 1 and 2 are commutative and associative. Composition algebras of dimension 2 are either quadratic field extensions of K or isomorphic to K ⊕ K. Composition algebras of dimension 4 are called quaternion algebras. They are associative but not commutative. Composition algebras of dimension 8 are called octonion algebras. They are neither associative nor commutative. For consistent terminology, algebras of dimension 1 have been called unarion, and those of dimension 2 binarion. Every composition algebra is an alternative algebra. Using the doubled form ( _ : _ ): A × A → K by then the trace of a is given by (a:1) and the conjugate by a* = (a:1)e – a where e is the basis element for 1. A series of exercises prove that a composition algebra is always an alternative algebra. When the field K is taken to be complex numbers C and the quadratic form z2, then four composition algebras over C are C itself, the bicomplex numbers, the biquaternions (isomorphic to the 2 × 2 complex matrix ring M(2, C)), and the bioctonions C ⊗ O, which are also called complex octonions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.