In mathematics, an element of a ring is called nilpotent if there exists some positive integer , called the index (or sometimes the degree), such that .
The term, along with its sister idempotent, was introduced by Benjamin Peirce in the context of his work on the classification of algebras.
This definition can be applied in particular to square matrices. The matrix
is nilpotent because . See nilpotent matrix for more.
In the factor ring , the equivalence class of 3 is nilpotent because 32 is congruent to 0 modulo 9.
Assume that two elements and in a ring satisfy . Then the element is nilpotent as An example with matrices (for a, b): Here and .
By definition, any element of a nilsemigroup is nilpotent.
No nilpotent element can be a unit (except in the trivial ring, which has only a single element 0 = 1). All nilpotent elements are zero divisors.
An matrix with entries from a field is nilpotent if and only if its characteristic polynomial is .
If is nilpotent, then is a unit, because entails
More generally, the sum of a unit element and a nilpotent element is a unit when they commute.
The nilpotent elements from a commutative ring form an ideal ; this is a consequence of the binomial theorem. This ideal is the nilradical of the ring. Every nilpotent element in a commutative ring is contained in every prime ideal of that ring, since . So is contained in the intersection of all prime ideals.
If is not nilpotent, we are able to localize with respect to the powers of : to get a non-zero ring . The prime ideals of the localized ring correspond exactly to those prime ideals of with . As every non-zero commutative ring has a maximal ideal, which is prime, every non-nilpotent is not contained in some prime ideal. Thus is exactly the intersection of all prime ideals.
A characteristic similar to that of Jacobson radical and annihilation of simple modules is available for nilradical: nilpotent elements of ring are precisely those that annihilate all integral domains internal to the ring (that is, of the form for prime ideals ).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, on appelle anneau nul ou anneau trivial l'anneau A réduit au singleton . On a : Cet anneau est commutatif. Son élément neutre pour la multiplication, noté habituellement 1A dans un anneau quelconque, est ici égal à 0A, l'élément neutre pour l'addition. Réciproquement, le seul anneau A vérifiant 1A = 0A est l'anneau nul puisqu'alors, pour tout élément de A, on a : L'anneau nul est l'objet final dans la catégorie des anneaux unitaires (i.e.
In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such that where 1 is the multiplicative identity; the element v is unique for this property and is called the multiplicative inverse of u. The set of units of R forms a group R^× under multiplication, called the group of units or unit group of R. Other notations for the unit group are R∗, U(R), and E(R) (from the German term Einheit).
En mathématiques, un sous-anneau d'un anneau (unitaire) A est une partie de A stable pour les opérations de A et ayant une structure d'anneau avec le même neutre multiplicatif que A. Une partie B d'un anneau (A,+,*). est appelée un sous-anneau de A lorsque : B est un sous-groupe de A pour l'addition ; B est stable pour la multiplication ; Le neutre multiplicatif de A appartient à B. Pour les restrictions des opérations de A, B est alors lui-même un anneau, avec le même neutre multiplicatif.
Ulam asked whether every connected Lie group can be represented on a countable structure. This is known in the linear case. We establish it for the first family of non-linear groups, namely in the nilpotent case. Further context is discussed to illustrate ...
We generalize the class vectors found in neural networks to linear subspaces (i.e., points in the Grassmann manifold) and show that the Grassmann Class Representation (GCR) enables simultaneous improvement in accuracy and feature transferability. In GCR, e ...
We show that for a surjective, separable morphism f of smooth projective varieties over a field of positive characteristic such that f(*) OX congruent to O-Y subadditivity of Kodaira dimension holds, provided the base is of general type and the Hasse-Witt ...