Summary
Rubidium is the chemical element with the symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have a density higher than water. On Earth, natural rubidium comprises two isotopes: 72% is a stable isotope 85Rb, and 28% is slightly radioactive 87Rb, with a half-life of 48.8 billion years—more than three times as long as the estimated age of the universe. German chemists Robert Bunsen and Gustav Kirchhoff discovered rubidium in 1861 by the newly developed technique, flame spectroscopy. The name comes from the Latin word rubidus, meaning deep red, the color of its emission spectrum. Rubidium's compounds have various chemical and electronic applications. Rubidium metal is easily vaporized and has a convenient spectral absorption range, making it a frequent target for laser manipulation of atoms. Rubidium is not a known nutrient for any living organisms. However, rubidium ions have similar properties and the same charge as potassium ions, and are actively taken up and treated by animal cells in similar ways. Rubidium is a very soft, ductile, silvery-white metal. It is the second most electropositive of the stable alkali metals and melts at a temperature of . Like other alkali metals, rubidium metal reacts violently with water. As with potassium (which is slightly less reactive) and caesium (which is slightly more reactive), this reaction is usually vigorous enough to ignite the hydrogen gas it produces. Rubidium has also been reported to ignite spontaneously in air. It forms amalgams with mercury and alloys with gold, iron, caesium, sodium, and potassium, but not lithium (even though rubidium and lithium are in the same group). Rubidium has a very low ionization energy of only 406 kJ/mol. Rubidium and potassium show a very similar purple color in the flame test, and distinguishing the two elements requires more sophisticated analysis, such as spectroscopy.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
MATH-489: Number theory II.c - Cryptography
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
HUM-471: Economic growth and sustainability I
This course examines growth from various angles: economic growth, growth in the use of resources, need for growth, limits to growth, sustainable growth, and, if time permits, population growth and gro
MSE-238: Structure of materials
Introduction to materials structure including crystallography, the structure of amorphous materials such as glasses, polymers and biomaterials as well as the basics of characterization techniques.
Related lectures (32)
Calculating Average Growth Rates
Explores the calculation of average growth rates and the sensitivity of growth rates to different time periods.
Functions: Parametric, Integrals, Multi-variable
Covers parametric functions, integrals, and the origin of plasticity in metals.
Understanding IPAT Formula
Explores the IPAT formula, analyzing environmental impact factors like population, affluence, and technology, and discusses strategies for meeting CO₂ emissions targets.
Show more
Related publications (37)

Catalyzing Bond-Dissociation in Graphene via Alkali-Iodide Molecules

Klaus Kern, Stephan Rauschenbach, Sabine Abb, Sven Alexander Szilagyi, Hannah Julia Ochner

Atomic design of a 2D-material such as graphene can be substantially influenced by etching, deliberately induced in a transmission electron microscope. It is achieved primarily by overcoming the threshold energy for defect formation by controlling the kine ...
WILEY-V C H VERLAG GMBH2021

UV-Irradiated 2-Keto-(1-C-13)Isocaproic Acid for High-Performance C-13 Hyperpolarized MR

Andrea Capozzi, Arthur César Pinon

Enhancing the sensitivity of magnetic resonance spectroscopy/imaging (MRS/MRI) by dissolution dynamic nuclear polarization (dDNP) has expanded the scope of MRS applications to new fields of research. Most importantly, it has paved the way toward noninvasiv ...
AMER CHEMICAL SOC2020

A rubidium vapor source for a plasma source for AWAKE

Gennady Plyushchev

We present the scheme for a rubidium vapor source that is used as a plasma source in the AWAKE plasma wakefield acceleration experiment. The plasma wakefield acceleration process requires a number of stringent parameters for the plasma: electron density ad ...
2018
Show more
Related concepts (23)
Chemical symbol
Chemical symbols are the abbreviations used in chemistry for chemical elements, functional groups and chemical compounds. Element symbols for chemical elements normally consist of one or two letters from the Latin alphabet and are written with the first letter capitalised. Earlier symbols for chemical elements stem from classical Latin and Greek vocabulary. For some elements, this is because the material was known in ancient times, while for others, the name is a more recent invention.
Radium
Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather than oxygen) upon exposure to air, forming a black surface layer of radium nitride (Ra3N2). All isotopes of radium are radioactive, the most stable isotope being radium-226 with a half-life of 1,600 years.
Strontium
Strontium is the chemical element with the symbol Sr and atomic number 38. An alkaline earth metal, strontium is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is exposed to air. Strontium has physical and chemical properties similar to those of its two vertical neighbors in the periodic table, calcium and barium. It occurs naturally mainly in the minerals celestine and strontianite, and is mostly mined from these.
Show more