In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals that its motion is confined to a submanifold
of much smaller dimensionality than that of its phase space.
Three features are often referred to as characterizing integrable systems:
the existence of a maximal set of conserved quantities (the usual defining property of complete integrability)
the existence of algebraic invariants, having a basis in algebraic geometry (a property known sometimes as algebraic integrability)
the explicit determination of solutions in an explicit functional form (not an intrinsic property, but something often referred to as solvability)
Integrable systems may be seen as very different in qualitative character from more generic dynamical systems,
which are more typically chaotic systems. The latter generally have no conserved quantities, and are asymptotically intractable, since an arbitrarily small perturbation in initial conditions may lead to arbitrarily large deviations in their trajectories over a sufficiently large time.
Many systems studied in physics are completely integrable, in particular, in the Hamiltonian sense, the key example being multi-dimensional harmonic oscillators. Another standard example is planetary motion about either one fixed center (e.g., the sun) or two. Other elementary examples include the motion of a rigid body about its center of mass (the Euler top) and the motion of an axially symmetric rigid body about a point in its axis of symmetry (the Lagrange top).
In the late 1960's, it was realized that there are completely integrable systems in physics having an infinite number of degrees of freedom, such as some models of shallow water waves (Korteweg–de Vries equation), the Kerr effect in optical fibres, described by the nonlinear Schrödinger equation, and certain integrable many-body systems, such as the Toda lattice.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course applies concepts from chemical kinetics and mass and energy balances to address chemical reaction engineering problems, with a focus on industrial applications. Students develop the abilit
Provides the students with basic notions and tools for the analysis of dynamic systems. Shows them how to develop mathematical models of dynamic systems and perform analysis in time and frequency doma
A dynamical billiard is a dynamical system in which a particle alternates between free motion (typically as a straight line) and specular reflections from a boundary. When the particle hits the boundary it reflects from it without loss of speed (i.e. elastic collisions). Billiards are Hamiltonian idealizations of the game of billiards, but where the region contained by the boundary can have shapes other than rectangular and even be multidimensional.
In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. (Dispersive effects are a property of certain systems where the speed of a wave depends on its frequency.) Solitons are the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems.
In mathematics, in the theory of integrable systems, a Lax pair is a pair of time-dependent matrices or operators that satisfy a corresponding differential equation, called the Lax equation. Lax pairs were introduced by Peter Lax to discuss solitons in continuous media. The inverse scattering transform makes use of the Lax equations to solve such systems. A Lax pair is a pair of matrices or operators dependent on time and acting on a fixed Hilbert space, and satisfying Lax's equation: where is the commutator.
In this article, we propose a dynamical system to avoid obstacles which are star shaped and simultaneously converge to a goal. The convergence is almost-global in a domain and the stationary points are identified explicitly. Our approach is based on the id ...
The concept of soliton gas was introduced in 1971 by Zakharov as an infinite collection of weakly interacting solitons in the framework of Korteweg-de Vries (KdV) equation. In this theoretical construction of a diluted (rarefied) soliton gas, solitons with ...
Empowered by ever-increasing computational power and algorithmic developments, electronic-structure simulations continue to drive research and innovation in materials science. In this context, ab-initio calculations offer an unbiased platform for the under ...