A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. High-power resistors that can dissipate many watts of electrical power as heat may be used as part of motor controls, in power distribution systems, or as test loads for generators.
Fixed resistors have resistances that only change slightly with temperature, time or operating voltage. Variable resistors can be used to adjust circuit elements (such as a volume control or a lamp dimmer), or as sensing devices for heat, light, humidity, force, or chemical activity.
Resistors are common elements of electrical networks and electronic circuits and are ubiquitous in electronic equipment. Practical resistors as discrete components can be composed of various compounds and forms. Resistors are also implemented within integrated circuits.
The electrical function of a resistor is specified by its resistance: common commercial resistors are manufactured over a range of more than nine orders of magnitude. The nominal value of the resistance falls within the manufacturing tolerance, indicated on the component.
Electronic symbol and RKM code
Two typical schematic diagram symbols are as follows:
File:Resistor, Rheostat (variable resistor), and Potentiometer symbols.svg| [[ANSI]]-style: (a) resistor, (b) rheostat (variable resistor), and (c) potentiometer
File:Resistor_symbol_IEC.svg|[[International Electrotechnical Commission|IEC]] resistor symbol
The notation to state a resistor's value in a circuit diagram varies.
One common scheme is the RKM code following IEC 60062. Rather than using a decimal separator, this notation uses a letter loosely associated with SI prefixes corresponding with the part's resistance. For example, 8K2 as part marking code, in a circuit diagram or in a bill of materials (BOM) indicates a resistor value of 8.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with mechanical friction. The SI unit of electrical resistance is the ohm (Ω), while electrical conductance is measured in siemens (S) (formerly called the 'mho' and then represented by ℧). The resistance of an object depends in large part on the material it is made of.
A capacitor is a device that stores electrical energy in an electric field by accumulating electric charges on two closely spaced surfaces that are insulated from each other. It is a passive electronic component with two terminals. The effect of a capacitor is known as capacitance. While some capacitance exists between any two electrical conductors in proximity in a circuit, a capacitor is a component designed to add capacitance to a circuit.
Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, one arrives at the three mathematical equations used to describe this relationship: where I is the current through the conductor, V is the voltage measured across the conductor and R is the resistance of the conductor. More specifically, Ohm's law states that the R in this relation is constant, independent of the current.
This course addresses the implementation of organic and printed electronics technologies using large area manufacturing techniques. It will provide knowledge on materials, printing techniques, devices
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
Ce cours propose une introduction à l'électrotechnique. Les lois fondamentales de l'électricité et différents composants d'un circuit électrique linéaire seront étudiés. L'analyse élémentaire des circ
The research presented in this article draws inspiration from previous efforts aimed at replicating the functions of various solid-state memristors using a variety of materials. The memristor circuit emulator serves as a cost-effective tool for circuit des ...
Laser Powder Bed Fusion (LPBF) is an Additive Manufacturing (AM) process consolidating parts layer by layer, from a metallic powder bed. It allows no limitation in terms of geometry and is therefore of particular interest to various industries. Metallic LP ...
This paper extends the high-order entropy stable (ES) adaptive moving mesh finite difference schemes developed in Duan and Tang (2022) to the two- and three-dimensional (multi-component) compressible Euler equations with the stiffened equation of state (EO ...