The Ehrenfest theorem, named after Austrian theoretical physicist Paul Ehrenfest, relates the time derivative of the expectation values of the position and momentum operators x and p to the expectation value of the force on a massive particle moving in a scalar potential , The Ehrenfest theorem is a special case of a more general relation between the expectation of any quantum mechanical operator and the expectation of the commutator of that operator with the Hamiltonian of the system where A is some quantum mechanical operator and ⟨A⟩ is its expectation value. It is most apparent in the Heisenberg picture of quantum mechanics, where it amounts to just the expectation value of the Heisenberg equation of motion. It provides mathematical support to the correspondence principle. The reason is that Ehrenfest's theorem is closely related to Liouville's theorem of Hamiltonian mechanics, which involves the Poisson bracket instead of a commutator. Dirac's rule of thumb suggests that statements in quantum mechanics which contain a commutator correspond to statements in classical mechanics where the commutator is supplanted by a Poisson bracket multiplied by iħ. This makes the operator expectation values obey corresponding classical equations of motion, provided the Hamiltonian is at most quadratic in the coordinates and momenta. Otherwise, the evolution equations still may hold approximately, provided fluctuations are small. Although, at first glance, it might appear that the Ehrenfest theorem is saying that the quantum mechanical expectation values obey Newton’s classical equations of motion, this is not actually the case. If the pair were to satisfy Newton's second law, the right-hand side of the second equation would have to be which is typically not the same as If for example, the potential is cubic, (i.e. proportional to ), then is quadratic (proportional to ). This means, in the case of Newton's second law, the right side would be in the form of , while in the Ehrenfest theorem it is in the form of .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.