Right angleIn geometry and trigonometry, a right angle is an angle of exactly 90 degrees or /2 radians corresponding to a quarter turn. If a ray is placed so that its endpoint is on a line and the adjacent angles are equal, then they are right angles. The term is a calque of Latin angulus rectus; here rectus means "upright", referring to the vertical perpendicular to a horizontal base line. Closely related and important geometrical concepts are perpendicular lines, meaning lines that form right angles at their point of intersection, and orthogonality, which is the property of forming right angles, usually applied to vectors.
Solid angleIn geometry, a solid angle (symbol: Ω) is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point. In the International System of Units (SI), a solid angle is expressed in a dimensionless unit called a steradian (symbol: sr).
SpeedIn everyday use and in kinematics, the speed (commonly referred to as v) of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quantity. The average speed of an object in an interval of time is the distance travelled by the object divided by the duration of the interval; the instantaneous speed is the limit of the average speed as the duration of the time interval approaches zero.
Circular arcA circular arc is the arc of a circle between a pair of distinct points. If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than pi radians (180 degrees); and the other arc, the major arc, subtends an angle greater than pi radians. The arc of a circle is defined as the part or segment of the circumference of a circle. A straight line that connects the two ends of the arc is known as a chord of a circle.
Circular sectorA circular sector, also known as circle sector or disk sector (symbol: ⌔), is the portion of a disk (a closed region bounded by a circle) enclosed by two radii and an arc, where the smaller area is known as the minor sector and the larger being the major sector. In the diagram, θ is the central angle, the radius of the circle, and is the arc length of the minor sector. The angle formed by connecting the endpoints of the arc to any point on the circumference that is not in the sector is equal to half the central angle.
Radian per secondThe radian per second (symbol: rad⋅s−1 or rad/s) is the unit of angular velocity in the International System of Units (SI). The radian per second is also the SI unit of angular frequency (symbol ω, omega). The radian per second is defined as the angular frequency that results in the angular displacement increasing by one radian every second. A frequency of one hertz (1 Hz), or one cycle per second (1 cps), corresponds to an angular frequency of 2pi radians per second.
ThetaTheta (UKˈθiːtə, USˈθeɪtə; uppercase: Θ or ; lowercase: θ or ; thē̂ta thɛ̂ːta; Modern: thī́ta ˈθita) is the eighth letter of the Greek alphabet, derived from the Phoenician letter Teth . In the system of Greek numerals, it has a value of 9. In Ancient Greek, θ represented the aspirated voiceless dental plosive t̪h, but in Modern Greek it represents the voiceless dental fricative θ. In its archaic form, θ was written as a cross within a circle (as in the Etruscan or ), and later, as a line or point in circle ( or ).
Area of a circleIn geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter pi represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159. One method of deriving this formula, which originated with Archimedes, involves viewing the circle as the limit of a sequence of regular polygons with an increasing number of sides.
Small-angle approximationThe small-angle approximations can be used to approximate the values of the main trigonometric functions, provided that the angle in question is small and is measured in radians: These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science. One reason for this is that they can greatly simplify differential equations that do not need to be answered with absolute precision.
ClockwiseTwo-dimensional rotation can occur in two possible directions. Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands: from the top to the right, then down and then to the left, and back up to the top. The opposite sense of rotation or revolution is (in Commonwealth English) anticlockwise (ACW) or (in North American English) counterclockwise (CCW). Before clocks were commonplace, the terms "sunwise" and "deasil", "deiseil" and even "deocil" from the Scottish Gaelic language and from the same root as the Latin "dexter" ("right") were used for clockwise.