In chemistry, dimerization refers to the process of joining two molecules or ions by bonds. The resulting bonds can be either strong or weak. Many symmetrical chemical species are described as dimers, even when the monomer is unknown or highly unstable.
The term homodimer is used when the two subunits are identical (e.g. A–A) and heterodimer when they are not (e.g. A–B). The reverse of dimerization is often called dissociation. When two oppositely charged ions associate into dimers, they are referred to as Bjerrum pairs, after Niels Bjerrum.
Anhydrous carboxylic acids form dimers by hydrogen bonding of the acidic hydrogen and the carbonyl oxygen. For example, acetic acid forms a dimer in the gas phase, where the monomer units are held together by hydrogen bonds. Many OH-containing molecules form dimers, e.g. the water dimer.
Excimers and exciplexes are excited structures with a short lifetime. For example, noble gases do not form stable dimers, but they do form the excimers Ar2*, Kr2* and Xe2* under high pressure and electrical stimulation.
Molecular dimers are often formed by the reaction of two identical compounds e.g.: . In this example, monomer "A" is said to dimerize to give the dimer "". An example is a diaminocarbene, which dimerize to give a tetraaminoethylene:
2 C(NR2)2 -> (R2N)2C=C(NR2)2
Carbenes are highly reactive and readily form bonds.
Dicyclopentadiene is an asymmetrical dimer of two cyclopentadiene molecules that have reacted in a Diels-Alder reaction to give the product. Upon heating, it "cracks" (undergoes a retro-Diels-Alder reaction) to give identical monomers:
C10H12 -> 2 C5H6
Many nonmetallic elements occur as dimers: hydrogen, nitrogen, oxygen, and the halogens (i.e. fluorine, chlorine, bromine and iodine). Noble gases can form dimers linked by van der Waals bonds, such as dihelium or diargon. Mercury occurs as a mercury(I) cation (), formally a dimeric ion. Other metals may form a proportion of dimers in their vapour phase. Known metallic dimers include dilithium (), disodium (), dipotassium (), dirubidium () and dicaesium ().