CodomainIn mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set Y in the notation f: X → Y. The term range is sometimes ambiguously used to refer to either the codomain or of a function. A codomain is part of a function f if f is defined as a triple (X, Y, G) where X is called the domain of f, Y its codomain, and G its graph. The set of all elements of the form f(x), where x ranges over the elements of the domain X, is called the of f.
Element (mathematics)In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set. Writing means that the elements of the set A are the numbers 1, 2, 3 and 4. Sets of elements of A, for example , are subsets of A. Sets can themselves be elements. For example, consider the set . The elements of B are not 1, 2, 3, and 4. Rather, there are only three elements of B, namely the numbers 1 and 2, and the set . The elements of a set can be anything. For example, is the set whose elements are the colors , and .
Axiom of extensionalityIn axiomatic set theory and the branches of logic, mathematics, and computer science that use it, the axiom of extensionality, or axiom of extension, is one of the axioms of Zermelo–Fraenkel set theory. It says that sets having the same elements are the same set. In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: or in words: Given any set A and any set B, if for every set X, X is a member of A if and only if X is a member of B, then A is equal to B.
Set-builder notationIn set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy. Defining sets by properties is also known as set comprehension, set abstraction or as defining a set's intension. Set (mathematics)#Roster notation A set can be described directly by enumerating all of its elements between curly brackets, as in the following two examples: is the set containing the four numbers 3, 7, 15, and 31, and nothing else.
Index setIn mathematics, an index set is a set whose members label (or index) members of another set. For instance, if the elements of a set A may be indexed or labeled by means of the elements of a set J, then J is an index set. The indexing consists of a surjective function from J onto A, and the indexed collection is typically called an indexed family, often written as {Aj}j∈J. An enumeration of a set S gives an index set , where f : J → S is the particular enumeration of S.
Range of a functionIn mathematics, the range of a function may refer to either of two closely related concepts: The codomain of the function The of the function Given two sets X and Y, a binary relation f between X and Y is a (total) function (from X to Y) if for every x in X there is exactly one y in Y such that f relates x to y. The sets X and Y are called domain and codomain of f, respectively. The image of f is then the subset of Y consisting of only those elements y of Y such that there is at least one x in X with f(x) = y.