The N200, or N2, is an event-related potential (ERP) component. An ERP can be monitored using a non-invasive electroencephalography (EEG) cap that is fitted over the scalp on human subjects. An EEG cap allows researchers and clinicians to monitor the minute electrical activity that reaches the surface of the scalp from post-synaptic potentials in neurons, which fluctuate in relation to cognitive processing. EEG provides millisecond-level temporal resolution and is therefore known as one of the most direct measures of covert mental operations in the brain. The N200 in particular is a negative-going wave that peaks 200-350ms post-stimulus and is found primarily over anterior scalp sites. Past research focused on the N200 as a mismatch detector, but it has also been found to reflect executive cognitive control functions, and has recently been used in the study of language (Folstein & Van Petten, 2008; Schmitt, Münte, & Kutas, 2000).
The N2 component starts with the discovery of EEG which dates back as early as 1929 with Hans Berger demonstrating the ability to record electrical activity of the brain by simply placing electrodes over the scalp and then amplifying the signal. Later, in 1936, researcher Pauline and Hallowell Davis manipulated events in the environment and recorded the first known ERP's. One of the first experiments to find evidence of an N200 was by Sutton, Braren, and Zubin (1965) when examining the effects of stimulus uncertainty on sensory potentials. In their study, participants were presented with two types of paired stimuli. In the certain condition, a cue stimulus was presented that was predictive of the modality of the target stimulus, which was either clicks or light flashes. In the uncertain condition, the cue stimulus was not predictive and could be followed by either a click or a light flash. The researchers occasionally found a negativity that peaked on average 190ms post-stimulus in the uncertain condition (N200), in addition to a positivity 300ms post-stimulus (P300).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In neurology, the Bereitschaftspotential or BP (German for "readiness potential"), also called the pre-motor potential or readiness potential (RP), is a measure of activity in the motor cortex and supplementary motor area of the brain leading up to voluntary muscle movement. The BP is a manifestation of cortical contribution to the pre-motor planning of volitional movement. It was first recorded and reported in 1964 by Hans Helmut Kornhuber and Lüder Deecke at the University of Freiburg in Germany.
The early left anterior negativity (commonly referred to as ELAN) is an event-related potential in electroencephalography (EEG), or component of brain activity that occurs in response to a certain kind of stimulus. It is characterized by a negative-going wave that peaks around 200 milliseconds or less after the onset of a stimulus, and most often occurs in response to linguistic stimuli that violate word-category or phrase structure rules (as in *the in room instead of in the room).
In neuroscience, the lateralized readiness potential (LRP) is an event-related brain potential, or increase in electrical activity at the surface of the brain, that is thought to reflect the preparation of motor activity on a certain side of the body; in other words, it is a spike in the electrical activity of the brain that happens when a person gets ready to move one arm, leg, or foot. It is a special form of bereitschaftspotential (a general pre-motor potential).
The auditory brainstem implant (ABI) is an auditory neuroprosthesis that provides hearing to deaf patients by electrically stimulating the cochlear nucleus (CN) of the brainstem. Whether such stimulation activates one or the other of the CN's two major sub ...
SPRINGER2022
Childhood trauma (CT) has been linked to increased risk for psychosis. Moreover, CT has been linked to psychosis phenotypes such as impaired cognitive and sensory functions involved in the detection of novel sensory stimuli. Our objective was to investigat ...
SPRINGER HEIDELBERG2023
, ,
Pre-stimulus brain activity is thought to modulate visual perception. However, the underlying processes are strongly debated. Moreover, the role of pre-stimulus activity beyond tasks with single, simple stimuli is largely unknown. Here, we analyzed electro ...