A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months. The last supernova directly observed in the Milky Way was Kepler's Supernova in 1604, appearing not long after Tycho's Supernova in 1572, both of which were visible to the naked eye. The remnants of more recent supernovae have been found, and observations of supernovae in other galaxies suggest they occur in the Milky Way on average about three times every century. A supernova in the Milky Way would almost certainly be observable through modern astronomical telescopes. The most recent naked-eye supernova was SN 1987A, which was the explosion of a blue supergiant star in the Large Magellanic Cloud, a satellite of the Milky Way. Theoretical studies indicate that most supernovae are triggered by one of two basic mechanisms: the sudden re-ignition of nuclear fusion in a white dwarf, or the sudden gravitational collapse of a massive star's core. In the re-ignition of a white dwarf, the object's temperature is raised enough to trigger runaway nuclear fusion, completely disrupting the star. Possible causes are an accumulation of material from a binary companion through accretion, or by a stellar merger. In the case of a massive star's sudden implosion, the core of a massive star will undergo sudden collapse once it is unable to produce sufficient energy from fusion to counteract the star's own gravity, which must happen once the star begins fusing iron, but may happen during an earlier stage of metal fusion. Supernovae can expel several solar masses of material at velocities up to several percent of the speed of light.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (11)
PHYS-643: Astrophysics VI : The variable Universe
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
PHYS-402: Astrophysics V : observational cosmology
Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen from the point of view of observations.
PHYS-439: Introduction to astroparticle physics
We present the role of particle physics in cosmology and in the description of astrophysical phenomena. We also present the methods and technologies for the observation of cosmic particles.
Show more
Related lectures (41)
Optical Transients: Supernovae and Tidal Disruption Events
Explores supernovae, their classification, energetics, and origins, as well as tidal disruption events, fast radio bursts, and gamma-ray bursts.
Gravitational Lensing: Basics and Applications
Explores the basics of gravitational lensing, clarifying common misconceptions and providing explicit observational tests.
Shock Waves - Astrophysics
Covers the origin of cosmic rays and the detection of pion-decay signatures.
Show more