Ring homomorphismIn ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if R and S are rings, then a ring homomorphism is a function f : R → S such that f is: addition preserving: for all a and b in R, multiplication preserving: for all a and b in R, and unit (multiplicative identity) preserving: Additive inverses and the additive identity are part of the structure too, but it is not necessary to require explicitly that they too are respected, because these conditions are consequences of the three conditions above.
Indexed familyIn mathematics, a family, or indexed family, is informally a collection of objects, each associated with an index from some index set. For example, a family of real numbers, indexed by the set of integers, is a collection of real numbers, where a given function selects one real number for each integer (possibly the same) as indexing. More formally, an indexed family is a mathematical function together with its domain and (that is, indexed families and mathematical functions are technically identical, just point of views are different).
Class (set theory)In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share. Classes act as a way to have set-like collections while differing from sets so as to avoid Russell's paradox (see ). The precise definition of "class" depends on foundational context. In work on Zermelo–Fraenkel set theory, the notion of class is informal, whereas other set theories, such as von Neumann–Bernays–Gödel set theory, axiomatize the notion of "proper class", e.
Disjoint setsIn mathematics, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two or more sets is called disjoint if any two distinct sets of the collection are disjoint. This definition of disjoint sets can be extended to families of sets and to indexed families of sets.
CodomainIn mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set Y in the notation f: X → Y. The term range is sometimes ambiguously used to refer to either the codomain or of a function. A codomain is part of a function f if f is defined as a triple (X, Y, G) where X is called the domain of f, Y its codomain, and G its graph. The set of all elements of the form f(x), where x ranges over the elements of the domain X, is called the of f.
Abuse of notationIn mathematics, abuse of notation occurs when an author uses a mathematical notation in a way that is not entirely formally correct, but which might help simplify the exposition or suggest the correct intuition (while possibly minimizing errors and confusion at the same time). However, since the concept of formal/syntactical correctness depends on both time and context, certain notations in mathematics that are flagged as abuse in one context could be formally correct in one or more other contexts.
Partial functionIn mathematics, a partial function f from a set X to a set Y is a function from a subset S of X (possibly the whole X itself) to Y. The subset S, that is, the domain of f viewed as a function, is called the domain of definition or natural domain of f. If S equals X, that is, if f is defined on every element in X, then f is said to be a total function. More technically, a partial function is a binary relation over two sets that associates every element of the first set to at most one element of the second set; it is thus a functional binary relation.
Constant functionIn mathematics, a constant function is a function whose (output) value is the same for every input value. For example, the function y(x) = 4 is a constant function because the value of y(x) is 4 regardless of the input value x (see image). As a real-valued function of a real-valued argument, a constant function has the general form y(x) = c or just y = c. Example: The function y(x) = 2 or just y = 2 is the specific constant function where the output value is c = 2. The domain of this function is the set of all real numbers R.
Strict 2-categoryIn , a strict 2-category is a with "morphisms between morphisms", that is, where each hom-set itself carries the structure of a category. It can be formally defined as a category over Cat (the , with the structure given by ). The concept of 2-category was first introduced by Charles Ehresmann in his work on enriched categories in 1965. The more general concept of (or weak 2-category), where composition of morphisms is associative only up to a 2-isomorphism, was introduced in 1968 by Jean Bénabou.
Range of a functionIn mathematics, the range of a function may refer to either of two closely related concepts: The codomain of the function The of the function Given two sets X and Y, a binary relation f between X and Y is a (total) function (from X to Y) if for every x in X there is exactly one y in Y such that f relates x to y. The sets X and Y are called domain and codomain of f, respectively. The image of f is then the subset of Y consisting of only those elements y of Y such that there is at least one x in X with f(x) = y.