Category of setsIn the mathematical field of , the category of sets, denoted as Set, is the whose are sets. The arrows or morphisms between sets A and B are the total functions from A to B, and the composition of morphisms is the composition of functions. Many other categories (such as the , with group homomorphisms as arrows) add structure to the objects of the category of sets and/or restrict the arrows to functions of a particular kind.
Mathematical structureIn mathematics, a structure is a set endowed with some additional features on the set (e.g. an operation, relation, metric, or topology). Often, the additional features are attached or related to the set, so as to provide it with some additional meaning or significance. A partial list of possible structures are measures, algebraic structures (groups, fields, etc.), topologies, metric structures (geometries), orders, events, equivalence relations, differential structures, and .
Surjective functionIn mathematics, a surjective function (also known as surjection, or onto function ˈɒn.tuː) is a function f such that every element y can be mapped from some element x such that f(x) = y. In other words, every element of the function's codomain is the of one element of its domain. It is not required that x be unique; the function f may map one or more elements of X to the same element of Y.
Group homomorphismIn mathematics, given two groups, (G, ∗) and (H, ·), a group homomorphism from (G, ∗) to (H, ·) is a function h : G → H such that for all u and v in G it holds that where the group operation on the left side of the equation is that of G and on the right side that of H. From this property, one can deduce that h maps the identity element eG of G to the identity element eH of H, and it also maps inverses to inverses in the sense that Hence one can say that h "is compatible with the group structure".
Natural transformationIn , a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category. Indeed, this intuition can be formalized to define so-called .
IsomorphismIn mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects).
AutomorphismIn mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object. In the context of abstract algebra, a mathematical object is an algebraic structure such as a group, ring, or vector space.
FunctorIn mathematics, specifically , a functor is a mapping between . Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which is applied.
EndomorphismIn mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space V is a linear map f: V → V, and an endomorphism of a group G is a group homomorphism f: G → G. In general, we can talk about endomorphisms in any . In the , endomorphisms are functions from a set S to itself. In any category, the composition of any two endomorphisms of X is again an endomorphism of X.
Algebra homomorphismIn mathematics, an algebra homomorphism is a homomorphism between two algebras. More precisely, if A and B are algebras over a field (or a ring) K, it is a function such that, for all k in K and x, y in A, one has The first two conditions say that F is a K-linear map, and the last condition says that F preserves the algebra multiplication. So, if the algebras are associative, F is a rng homomorphism, and, if the algebras are rings and F preserves the identity, it is a ring homomorphism.