Philippe GilletPhilippe GILLET completed his undergraduate studies in Earth Science at Ecole normale supérieure de la rue dUlm (Paris). In 1983 he obtained a PhD in Geophysics at Université de Paris VII and joined Université de Rennes I as an assistant. Having obtained a State Doctorate in 1988, he became a Professor at this same university, which he left in 1992 to join Ecole normale supérieure de Lyon.
The first part of his research career was devoted to the formation of mountain ranges particularly of the Alps. In parallel, he developed experimental techniques (diamond anvil cells) to recreate the pressure and temperature prevailing deep inside planets in the lab. These experiments aim at understanding what materials make up the unreachable depths of planets in the solar system.
In 1997, Gillet started investigating extraterrestrial matter. He was involved in describing meteorites coming from Mars, the moon or planets which have disappeared today and explaining how these were expelled from their original plant by enormous shocks which propelled them to Earth. He also participated in the NASA Stardust program and contributed to identify comet grains collected from the tail of Comet Wild 2 and brought back to Earth. These grains represent the initial minerals in our solar system and were formed over 4.5 billion years ago. He has also worked on the following subjects:
Interactions between bacteria and minerals.
Solid to glass transition under pressure.
Experimental techniques: laser-heated diamond anvil cell, Raman spectroscopy, X-ray diffraction with synchrotron facilities, electron microscopy.
Philippe Gillet is also active in science and education management. He was the Director of the CNRS Institut National des Sciences de lUnivers (France), the President of the French synchrotron facility SOLEIL and of the French National Research Agency (2007), and the Director of Ecole normale supérieure de Lyon. Before joining EPFL he was the Chief of Staff of the French Minister of Higher Education and Research.
Selected publications:
Ferroir, T., L. Dubrovinsky, A. El Goresy, A. Simionovici, T. Nakamura, and P. Gillet (2010), Carbon polymorphism in shocked meteorites: Evidence for new natural ultrahard phases, Earth and Planetary Science Letters, 290(1-2), 150-154.
Barrat J.A., Bohn M., Gillet Ph., Yamaguchi A. (2009) Evidence for K-rich terranes on Vesta from impact spherules. Meteoritics & Planetary Science, 44, 359374.
Brownlee D, Tsou P, Aleon J, et al. (2006) Comet 81P/Wild 2 under a microscope. Science, 314, 1711-1716.
Beck P., Gillet Ph., El Goresy A., and Mostefaoui S. (2005) Timescales of shock processes in chondrites and Martian meteorites. Nature 435, 1071-1074.
Blase X., Gillet Ph., San Miguel A. and Mélinon P. (2004) Exceptional ideal strength of carbon clathrates. Phys. Rev. Lett. 92, 215505-215509.
Gillet Ph. (2002) Application of vibrational spectroscopy to geology. In Handbook of vibrational spectroscopy, Vol. 4 (ed. J. M. Chalmers and P. R. Griffiths), pp. 1-23. John Wiley & Sons.
Gillet Ph., Chen C., Dubrovinsky L., and El Goresy A. (2000) Natural NaAlSi3O8 -hollandite in the shocked Sixiangkou meteorite. Science 287, 1633-1636.
Mohammad Khaja NazeeruddinDr. Md. K. Nazeeruddin received M.Sc. and Ph. D. in inorganic chemistry from Osmania University, Hyderabad, India. He joined as a Lecturer in Deccan College of Engineering and Technology, Osmania University in 1986, and subsequently, moved to Central Salt and Marine Chemicals Research Institute, Bhavnagar, as a Research Associate. He was awarded the Government of Indias fellowship in 1987 for study abroad. In 2014, EPFL awarded him the title of Professor. His current research at EPFL focuses on Dye Sensitized Solar Cells, Perovskite Solar Cells, CO2 reduction, Hydrogen production, and Light-emitting diodes. He has published more than 509 peer-reviewed papers, ten book chapters, and he is inventor/co-inventor of over 50 patents. The high impact of his work has been recognized by invitations to speak at over 130 international conferences, and has been nominated to the OLLA International Scientific Advisory Board. He appeared in the ISI listing of most cited chemists, and has more than 49'000 citations with an h-index of 105. He is teaching "Functional Materials" course at EPFL, and Korea University; directing, and managing several industrial, national, and European Union projects. He was awarded EPFL Excellence prize in 1998 and 2006, Brazilian FAPESP Fellowship in 1999, Japanese Government Science & Technology Agency Fellowship, in 1998, Government of India National Fellowship in 1987-1988. Recently he has been appointed as World Class University (WCU) professor by the Korea University, Jochiwon, Korea (http://dses.korea.ac.kr/eng/sub01_06_2.htm), Adjunct Professor by the King Abdulaziz University, Jeddah, Saudi Arabia and Eminent Professor in Brunei. Theo LasserDe nationalité allemande, né en 1952 à Lauchheim (Baden-Württemberg). Après des études de physique à l'Université Fridericiana de Karlsruhe, il y obtient son diplôme de physique en 1978.
En 1979, il rejoint l'Institut de Recherches franco-allemand à Saint-Louis (France) comme collaborateur scientifique. En 1986, il rejoint la division de recherche de Carl Zeiss à Oberkochen (Allemagne) où il développe principalement divers systèmes laser pour des applications médicales. Dès 1990, il dirige le laboratoire laser de la division médicale. En 1993, il prend la direction de l'unité "laser d'ophtalmologie". Dès le début 1995, il est chargé de restructurer et regrouper les nombreuses activités d'ophtalmologie chez Carl Zeiss et de les transférer à Jena. Durant cette période, il réalise des nouveaux instruments de réfraction, des biomicroscopes et des caméras rétiniennes.
Dès janvier 1998, il dirige la recherche de Carl Zeiss à Jena où il initie de nouveaux projets en microscopie, en microtechnique et en recherche médicale. En juillet 1998, il est nommé professeur ordinaire en optique biomédicale à l'Institut d'optique appliquée. Au sein du Département de microtechnique, son activité de recherche porte sur la photonique biomédicale. Il participe à l'enseignement d'optique et d'instrumentation biomédicale.
Short CV
1972 Physics University of Karlsruhe (Germany)
1979 l'Institut de Recherches franco-allemand à Saint-Louis (France)
1986 central research division Carl Zeiss, Oberkochen (Germany)
1990 Med - Division, ophthalmic lasers
1994 Ophthalmology division, Carl Zeiss Jena
1998 Head of Central research Carl Zeiss Jena
1998 full Professor Ecole Polytechnique Federale Lausanne, Switzerland
Nicolas GrandjeanNicolas Grandjean received a PhD degree in physics from the University ofNice Sophia Antipolis in 1994 and shortly thereafter joined the French National Center for Scientific Research (CNRS) as a permanent staff member. In 2004, he was appointed tenure-track assistant professor at the École polytechnique fédérale de Lausanne (EPFL) where he created the Laboratory for advanced semiconductors for photonics and electronics. He was promoted to full professor in 2009. He was the director of the Institute of Condensed Matter Physics from 2012 to 2016 and then moved to the University of California at Santa Barbara where he spent 6 months as a visiting professor. Since 2018, he is the head of the School of Physics at the EPFL. He was awarded the Sandoz Family Foundation Grant for Academic Promotion, received the “Nakamura Lecturer” Award in 2010, the "Quantum Devices Award” at the 2017 Compound Semiconductor Week, and “2016 best teacher” award from the EPFL Physics School. His research interests are focused on the physics of nanostructures and III-V nitride semiconductor quantum photonics.
Luc ThévenazLuc Thévenaz received in 1982 the M.Sc. degree in astrophysics from the Observatory of Geneva, Switzerland, and in 1988 the Ph.D. degree in physics from the University of Geneva, Switzerland. He developed at this moment his field of expertise, i.e. fibre optics. In 1988 he joined the Swiss Federal Institute of Technology of Lausanne (EPFL) where he currently leads a research group involved in photonics, namely fibre optics and optical sensing. Research topics include Brillouin-scattering fibre sensors, nonlinear fibre optics, slow & fast light and laser spectroscopy in gases. His main achievements are: - the invention of a novel configuration for distributed Brillouin fibre sensing based on a single laser source, resulting in a high intrinsic stability making for the first time field measurements possible, - the development of a photoacoustic gas trace sensor using a near infra-red semiconductor laser, detecting a gas concentration at the ppb level, - the first experimental demonstration of optically-controlled slow & fast light in optical fibres, realized at ambient temperature and operating at any wavelength since based on stimulated Brillouin scattering. The first negative group velocity of light was also realized in optical fibres using this approach. In 1991, he visited the PUC University in Rio de Janeiro, Brazil where he worked on the generation of picosecond pulses in semiconductor lasers. In 1991-1992 he stayed at Stanford University, USA, where he participated in the development of a Brillouin laser gyroscope. He joined in 1998 the company Orbisphere Laboratories SA in Neuchâtel, Switzerland, as Expert Scientist to develop gas trace sensors based on photoacoustic laser spectroscopy. In 1998 and 1999 he visited the Korea Advanced Institute of Science and Technology (KAIST) in Daejon, South Korea, where he worked on fibre laser current sensors. In 2000 he co-founded the spin-off company Omnisens that is developing and commercializing advanced photonic instrumentation. In 2007 he visited Tel Aviv University where he studied the all-optical control of polarization in optical fibres. During winter 2010 he stayed at the University of Sydney where he studied applications of stimulated Brillouin scattering in chalcogenide waveguides. In 2014 he stayed at the Polytechnic University of Valencia where he worked on microwave applications of stimulated Brillouin scattering. He was member of the Consortium in the FP7 European Project GOSPEL "Governing the speed of light", was Chairman of the European COST Action 299 "FIDES: Optical Fibres for New Challenges Facing the Information Society" and is author or co-author of some 480 publications and 12 patents. He is now Coordinator of the H2020 Marie Skłodowska-Curie Innovative Training Networks FINESSE (FIbre NErve Systems for Sensing). He is co-Executive Editor-in-Chief of the journal "Nature Light: Science & Applications" and is Member of the Editorial Board (Associate Editor) for the journal "APL Photonics" & "Laser & Photonics Reviews". He is also Fellow of both the IEEE and the Optical Society (OSA).
Tobias KippenbergTobias J. Kippenberg is Full Professor of Physics at EPFL and leads the Laboratory of Photonics and Quantum Measurement. He obtained his BA at the RWTH Aachen, and MA and PhD at the California Institute of Technology (Caltech in Pasadena, USA). From 2005- 2009 he lead an Independent Research Group at the MPI of Quantum Optics, and is at EPFL since. His research interest are the Science and Applications of ultra high Q microcavities; in particular with his research group he discovered chip-scale Kerr frequency comb generation (Nature 2007, Science 2011) and observed radiation pressure backaction effects in microresonators that now developed into the field of cavity optomechanics (Science 2008). Tobias Kippenberg is alumni of the “Studienstiftung des Deutschen Volkes”. For his invention of “chip-scale frequency combs” he received he Helmholtz Price for Metrology (2009) and the EFTF Young Investigator Award (2010). For his research on cavity optomechanics, he received the EPS Fresnel Prize (2009). In addition he is recipient of the ICO Prize in Optics (2014), the Swiss National Latsis award (2015), the German Wilhelm Klung Award (2015) and ZEISS Research Award (2018). He is fellow of the APS and OSA, and listed since 2014 in the Thomas Reuters highlycited.com in the domain of Physics. EDUCATION 2009: Habilitation (Venia Legendi) in Physics, Ludwig-Maximilians-Universität München 2004: PhD, California Institute of Technology (Advisor Professor Kerry Vahala) 2000: Master of Science (Applied Physics), California Institute of Technology 1998: BA in Physics, Technical University of Aachen (RWTH), Germany 1998: BA in Electrical Engineering, Technical University of Aachen (RWTH), Germany ACADEMIC POSITIONS 2013 - present: Full Professor EPFL 2010 - 2012: Associate Professor EPFL 2008 - 2010: Tenure Track Assistant Professor, Ecole Polytechnique Federale de Lausanne 2007 - present: Marie Curie Excellent Grant Team Leader, Max Planck Institute of Quantum Optics (Division of Prof.T.W. Hänsch) 2005 - present: Leader of an Independent Junior Research Group, Max Planck Institute 2005- present: Habilitant (Prof. Hänsch) Ludwig-Maximilians-Universität (LMU) 2005-2006: Postdoctoral Scholar, Center for the Physics of Information, California Institute of Technology 2000-2004: Graduate Research Assistant, California Institute of Technology PRIZES AND HONORS: ZEISS Research Award 2018 Fellow of the APS 2016 Klung-Wilhelmy Prize 2015 Swiss Latsis Prize 2014 Selected Thomson Reuters Highly Cited Researcher in Physics, 2014/2015 ICO Prize, 2013 EFTF Young Scientist Award (for "invention of microresonator based frequency combs") 2010 Fresnel Prize of the European Physical Society (for contributions to Optomechanics) 2009 Helmholtz Prize for Metrology (for invention of the monolithic frequency comb) 2009 1st Prize winner of the EU Contest for Young Scientists, Helsinki, Finland. Sept. 1996 Jugend forscht 1st Physics Prize at the German National Science Contest May 1996 FELLOWSHIPS Fellow of the German National Merit Foundation ("Studienstiftung des Deutschen Volkes") 1998-2002 Member of the Daimler-Chysler-Fellowship-Organization 1998-2002 Dr. Ulderup Fellowship 1999-2000 RESEARCH INTERESTS Experimental and theoretical research in photonics, notably high Q optical microcavities and their use in cavity quantum optomechanics and frequency metrology PUBLICATIONS AND OFTEN CITED METRICS*: >70 Publications in peer reviewed journals Researcher Google Profile: http://scholar.google.ch/citations?user=PRCbG2kAAAAJ&hl=en h-Index 54 (Google scholar H: 64, >25,000 citations) Thomson Reuters/Claravite List of Highly Cited Researchers (2014,2015,2016,2017) careful in its use: https://www.aps.org/publications/apsnews/201411/backpage.cfm KEY PUBLICATIONS AND REVIEWS: A. Ghadimi, et al. Elastic strain engineering for ultra high Q nanomechanical oscillators Science, (2018) Trocha, et al. Ultrafast distance measurements using soliton microresonator frequency combs Science, Vol. 359 (2018) [joint work with C. Koos] Pablo-Marin et al. Microresonator-based solitons for massively parallel coherent optical communications Nature (2017) [joint work with C. Koos] V. Brasch, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, vol. 351, num. 6271 (2015) Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Reviews of Modern Physics 86, 1391-1452, (2014) Wilson, D. J. et al. Measurement and control of a mechanical oscillator at its thermal decoherence rate. Nature (2014). Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63-67 (2012). Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555-559, (2011). Weis, S. et al. Optomechanically induced transparency. Science 330, 1520-1523 (2010). Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172-1176, (2008). Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature (2007) Schliesser, A., DelHaye, P., Nooshi, N., Vahala, K. & Kippenberg, T. Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. Physical Review Letters 97, (2006).