A supercluster is a large group of smaller galaxy clusters or galaxy groups; they are among the largest known structures in the universe. The Milky Way is part of the Local Group galaxy group (which contains more than 54 galaxies), which in turn is part of the Virgo Supercluster, which is part of the Laniakea Supercluster. The large size and low density of superclusters means that they, unlike clusters, expand with the Hubble expansion. The number of superclusters in the observable universe is estimated to be 10 million.
The existence of superclusters indicates that the galaxies in the Universe are not uniformly distributed; most of them are drawn together in groups and clusters, with groups containing up to some dozens of galaxies and clusters up to several thousand galaxies. Those groups and clusters and additional isolated galaxies in turn form even larger structures called superclusters.
Their existence was first postulated by George Abell in his 1958 Abell catalogue of galaxy clusters. He called them "second-order clusters", or clusters of clusters.
Superclusters form massive structures of galaxies, called "filaments", "supercluster complexes", "walls" or "sheets", that may span between several hundred million light-years to 10 billion light-years, covering more than 5% of the observable universe. These are the largest structures known to date. Observations of superclusters can give information about the initial condition of the universe, when these superclusters were created. The directions of the rotational axes of galaxies within superclusters are studied by those who believe that they may give insight and information into the early formation process of galaxies in the history of the Universe.
Interspersed among superclusters are large voids of space where few galaxies exist. Superclusters are frequently subdivided into groups of clusters called galaxy groups and clusters.
Although superclusters are supposed to be the largest structures in the universe according to the Cosmological principle, larger structures have been observed in surveys, including the Sloan Great Wall.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen
from the point of view of observations.
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major
The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time; the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. Initially, it was estimated that there may be 2 trillion galaxies in the observable universe, although that number was reduced in 2021 to only several hundred billion based on data from New Horizons.
The Milky Way is the galaxy that includes the Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. The term Milky Way is a translation of the Latin via lactea, from the Greek γαλακτικὸς κύκλος (galaktikòs kýklos), meaning "milky circle". From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within.
The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. According to this theory, space and time emerged together 13.787billion years ago, and the universe has been expanding ever since the Big Bang. While the spatial size of the entire universe is unknown, it is possible to measure the size of the observable universe, which is approximately 93 billion light-years in diameter at the present day.
Explores phase transitions through percolation in 2D networks.
Explores the 3D distribution of galaxies, galaxy clustering, and the cosmic microwave background, shedding light on the observable universe's contents and properties.
Explores the history of the Universe, from Big Bang Nucleosynthesis to the Cosmic Microwave Background, including mass measurements, CMB's role, and statistical assessments.
This study focuses on Pristine_180956.78-294759.8 (hereafter P180956, [Fe/H] = -1.95 +/- 0.02), a star selected from the Pristine Inner Galaxy Survey (PIGS), and followed-up with the recently commissioned Gemini High-resolution Optical SpecTrograph (GHOST) ...
Terrestrial particle accelerators collide charged particles, then watch the trajectory of outgoing debris - but they cannot manipulate dark matter. Fortunately, dark matter is the main component of galaxy clusters, which are continuously pulled together by ...
The Telescope Array Collaboration has reported an evidence for existence of a source of ultrahigh energy cosmic ray events in Perseus-Pisces supercluster. We show that the mere existence of such a source imposes an upper bound on the strength of intergalac ...