Eddy-current testing (also commonly seen as eddy current testing and ECT) is one of many electromagnetic testing methods used in nondestructive testing (NDT) making use of electromagnetic induction to detect and characterize surface and sub-surface flaws in conductive materials.
Eddy current testing (ECT) as a technique for testing finds its roots in electromagnetism. Eddy currents were first observed by François Arago in 1824, but French physicist Léon Foucault is credited with discovering them in 1855. ECT began largely as a result of the English scientist Michael Faraday's discovery of electromagnetic induction in 1831. Faraday discovered that when there is a closed path through which current can circulate and a time-varying magnetic field passes through a conductor (or vice versa), an electric current flows through this conductor.
In 1879, another English-born scientist, David Edward Hughes, demonstrated how the properties of a coil change when placed in contact with metals of different conductivity and permeability, which was applied to metallurgical sorting tests.
Much of the development of ECT as a nondestructive testing technique for industrial applications was carried out during World War II in Germany. Professor Friedrich Förster while working for the Kaiser-Wilhelm Institute (now the Kaiser Wilhelm Society) adapted eddy current technology to industrial use, developing instruments measuring conductivity and sorting mixed ferrous components. After the war, in 1948, Förster founded a company, now called the Foerster Group where he made great strides in developing practical ECT instruments and marketing them.
Eddy current testing is now a widely used and well understood inspection technique for flaw detection, as well as thickness and conductivity measurements.
Frost & Sullivan analysis in the global NDT equipment market in 2012 estimated the magnetic and electromagnetic NDT equipment market at $220 million, which includes conventional eddy current, magnetic particle inspection, eddy current array, and remote-field testing.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Basic knowledge of the classical non-destructive testing methods as they are used today in industrial applications and the advanced (mostly imaging) technologies used for the analysis of materials and
Nondestructive testing (NDT) is any of a wide group of analysis techniques used in science and technology industry to evaluate the properties of a material, component or system without causing damage. The terms nondestructive examination (NDE), nondestructive inspection (NDI), and nondestructive evaluation (NDE) are also commonly used to describe this technology. Because NDT does not permanently alter the article being inspected, it is a highly valuable technique that can save both money and time in product evaluation, troubleshooting, and research.
Introduces formal verification and its advantages over traditional testing methods, discussing automated theorem proving and compiling correctness statements into verification conditions.
Ultra high performance fiber reinforced cementitious composites (UHPFRCs) have demonstrated their outstanding efficiency as structural materials. Determination of the bending resistance of members combining UHPFRC with steel reinforcement bars (R-UHPFRC) u ...
2022
, , ,
Four Electron Cyclotron Heating Upper Launchers (ECHUL) will be used at ITER to counteract magneto-hydrodynamic plasma instabilities by targeting them with up to 20 MW of mm-wave power at 170 GHz. The millimeter waves are guided through a set of fixed mirr ...
Fuzzing has emerged as the most broadly used testing technique to discover bugs. Effective fuzzers rely on coverage to prioritize inputs that exercise new program areas. Edge-based code coverage of the Program Under Test (PUT) is the most commonly used cov ...