Summary
Learning analytics is the measurement, collection, analysis and reporting of data about learners and their contexts, for purposes of understanding and optimizing learning and the environments in which it occurs. The growth of online learning since the 1990s, particularly in higher education, has contributed to the advancement of Learning Analytics as student data can be captured and made available for analysis. When learners use an LMS, social media, or similar online tools, their clicks, navigation patterns, time on task, social networks, information flow, and concept development through discussions can be tracked. The rapid development of massive open online courses (MOOCs) offers additional data for researchers to evaluate teaching and learning in online environments. Although a majority of Learning Analytics literature has started to adopt the aforementioned definition, the definition and aims of Learning Analytics are still contested. One earlier definition discussed by the community suggested that Learning Analytics is the use of intelligent data, learner-produced data, and analysis models to discover information and social connections for predicting and advising people's learning. But this definition has been criticised by George Siemens and Mike Sharkey. Dr. Wolfgang Greller and Dr. Hendrik Drachsler defined learning analytics holistically as a framework. They proposed that it is a generic design framework that can act as a useful guide for setting up analytics services in support of educational practice and learner guidance, in quality assurance, curriculum development, and in improving teacher effectiveness and efficiency. It uses a general morphological analysis (GMA) to divide the domain into six "critical dimensions". The broader term "Analytics" has been defined as the science of examining data to draw conclusions and, when used in decision-making, to present paths or courses of action. From this perspective, Learning Analytics has been defined as a particular case of Analytics, in which decision-making aims to improve learning and education.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
CS-411: Digital education
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies on this topic: do stud
Related lectures (1)
Related publications (16)