Beltrami equationIn mathematics, the Beltrami equation, named after Eugenio Beltrami, is the partial differential equation for w a complex distribution of the complex variable z in some open set U, with derivatives that are locally L2, and where μ is a given complex function in L∞(U) of norm less than 1, called the Beltrami coefficient, and where and are Wirtinger derivatives. Classically this differential equation was used by Gauss to prove the existence locally of isothermal coordinates on a surface with analytic Riemannian metric.
Euclidean planeIn mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted E2. It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement. A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane.
Unit diskIn mathematics, the open unit disk (or disc) around P (where P is a given point in the plane), is the set of points whose distance from P is less than 1: The closed unit disk around P is the set of points whose distance from P is less than or equal to one: Unit disks are special cases of disks and unit balls; as such, they contain the interior of the unit circle and, in the case of the closed unit disk, the unit circle itself. Without further specifications, the term unit disk is used for the open unit disk about the origin, , with respect to the standard Euclidean metric.
Quasiconformal mappingIn mathematical complex analysis, a quasiconformal mapping, introduced by and named by , is a homeomorphism between plane domains which to first order takes small circles to small ellipses of bounded eccentricity. Intuitively, let f : D → D′ be an orientation-preserving homeomorphism between open sets in the plane. If f is continuously differentiable, then it is K-quasiconformal if the derivative of f at every point maps circles to ellipses with eccentricity bounded by K. Suppose f : D → D′ where D and D′ are two domains in C.
Möbius stripIn mathematics, a Möbius strip, Möbius band, or Möbius loop is a surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Benedict Listing and August Ferdinand Möbius in 1858, but it had already appeared in Roman mosaics from the third century CE. The Möbius strip is a non-orientable surface, meaning that within it one cannot consistently distinguish clockwise from counterclockwise turns.
Hodge theoryIn mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic. The theory was developed by Hodge in the 1930s to study algebraic geometry, and it built on the work of Georges de Rham on de Rham cohomology.