Beltrami equationIn mathematics, the Beltrami equation, named after Eugenio Beltrami, is the partial differential equation for w a complex distribution of the complex variable z in some open set U, with derivatives that are locally L2, and where μ is a given complex function in L∞(U) of norm less than 1, called the Beltrami coefficient, and where and are Wirtinger derivatives. Classically this differential equation was used by Gauss to prove the existence locally of isothermal coordinates on a surface with analytic Riemannian metric.