Summary
In mathematics, a unitary representation of a group G is a linear representation π of G on a complex Hilbert space V such that π(g) is a unitary operator for every g ∈ G. The general theory is well-developed in the case that G is a locally compact (Hausdorff) topological group and the representations are strongly continuous. The theory has been widely applied in quantum mechanics since the 1920s, particularly influenced by Hermann Weyl's 1928 book Gruppentheorie und Quantenmechanik. One of the pioneers in constructing a general theory of unitary representations, for any group G rather than just for particular groups useful in applications, was George Mackey. The theory of unitary representations of topological groups is closely connected with harmonic analysis. In the case of an abelian group G, a fairly complete picture of the representation theory of G is given by Pontryagin duality. In general, the unitary equivalence classes (see below) of irreducible unitary representations of G make up its unitary dual. This set can be identified with the spectrum of the C*-algebra associated to G by the group C*-algebra construction. This is a topological space. The general form of the Plancherel theorem tries to describe the regular representation of G on L2(G) by means of a measure on the unitary dual. For G abelian this is given by the Pontryagin duality theory. For G compact, this is done by the Peter–Weyl theorem; in that case the unitary dual is a discrete space, and the measure attaches an atom to each point of mass equal to its degree. Let G be a topological group. A strongly continuous unitary representation of G on a Hilbert space H is a group homomorphism from G into the unitary group of H, such that g → π(g) ξ is a norm continuous function for every ξ ∈ H. Note that if G is a Lie group, the Hilbert space also admits underlying smooth and analytic structures. A vector ξ in H is said to be smooth or analytic if the map g → π(g) ξ is smooth or analytic (in the norm or weak topologies on H).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.