Résumé
En mathématiques, une représentation unitaire d'un groupe G est une représentation linéaire π de G sur un espace de Hilbert complexe V telle que π(g) est un opérateur unitaire pour tout g ∈ G. La théorie générale est bien développée dans le cas où G est un groupe topologique localement compact (séparé) et les représentations sont fortement continues. La théorie a été largement appliquée en mécanique quantique depuis les années 1920, particulièrement sous l'influence par le livre de 1928 de Hermann Weyl, Gruppentheorie und Quantenmechanik. L'un des pionniers dans la construction d'une théorie générale des représentations unitaires, pour tout groupe G plutôt que pour des groupes particuliers utiles dans les applications, était George Mackey. La théorie des représentations unitaires des groupes topologiques est étroitement liée à l'analyse harmonique. Dans le cas d'un groupe abélien G, une image assez complète de la théorie des représentations de G est donnée par la dualité de Pontryagin. En général, les classes d'équivalence unitaires (voir ci-dessous) des représentations unitaires irréductibles de G constituent son dual unitaire. Cet ensemble peut être identifié au spectre de la C*-algèbre associée à G par la construction de la C*-algèbre de groupe. C'est un espace topologique. La forme générale du théorème de Plancherel tente de décrire la représentation régulière de G sur L2(G) au moyen d'une mesure sur le dual unitaire. Pour G abélien, ceci est donné par la théorie de la dualité de Pontryagin. Pour G compact, cela se fait par le théorème de Peter–Weyl ; dans ce cas le dual unitaire est un espace discret et la mesure attache un atome à chaque point de masse égale à son degré. Soit G un groupe topologique. Une représentation unitaire fortement continue de G sur un espace de Hilbert H est un homomorphisme de groupe de G dans le groupe unitaire de H, telle que g → π(g) ξ est une fonction continue (pour la topologie définie par la norme) pour tout ξ ∈ H.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.