En mathématiques, une représentation unitaire d'un groupe G est une représentation linéaire π de G sur un espace de Hilbert complexe V telle que π(g) est un opérateur unitaire pour tout g ∈ G. La théorie générale est bien développée dans le cas où G est un groupe topologique localement compact (séparé) et les représentations sont fortement continues.
La théorie a été largement appliquée en mécanique quantique depuis les années 1920, particulièrement sous l'influence par le livre de 1928 de Hermann Weyl, Gruppentheorie und Quantenmechanik. L'un des pionniers dans la construction d'une théorie générale des représentations unitaires, pour tout groupe G plutôt que pour des groupes particuliers utiles dans les applications, était George Mackey.
La théorie des représentations unitaires des groupes topologiques est étroitement liée à l'analyse harmonique. Dans le cas d'un groupe abélien G, une image assez complète de la théorie des représentations de G est donnée par la dualité de Pontryagin. En général, les classes d'équivalence unitaires (voir ci-dessous) des représentations unitaires irréductibles de G constituent son dual unitaire. Cet ensemble peut être identifié au spectre de la C*-algèbre associée à G par la construction de la C*-algèbre de groupe. C'est un espace topologique.
La forme générale du théorème de Plancherel tente de décrire la représentation régulière de G sur L2(G) au moyen d'une mesure sur le dual unitaire. Pour G abélien, ceci est donné par la théorie de la dualité de Pontryagin. Pour G compact, cela se fait par le théorème de Peter–Weyl ; dans ce cas le dual unitaire est un espace discret et la mesure attache un atome à chaque point de masse égale à son degré.
Soit G un groupe topologique. Une représentation unitaire fortement continue de G sur un espace de Hilbert H est un homomorphisme de groupe de G dans le groupe unitaire de H,
telle que g → π(g) ξ est une fonction continue (pour la topologie définie par la norme) pour tout ξ ∈ H.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
vignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
vignette|La transformée de Fourier En mathématiques, notamment en analyse harmonique et dans la théorie des groupes topologiques, la dualité de Pontriaguine explique les principales propriétés de la transformée de Fourier.
Presentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...).Proofs of
Quantum computing has received wide-spread attention lately due the possibility of a near-term breakthrough of quantum supremacy. This course acts as an introduction to the area of quantum computing.
A theoretical and computational framework for signal sampling and approximation is presented from an intuitive geometric point of view. This lecture covers both mathematical and practical aspects of
We study the spectra of non-regular semisimple elements in irreducible representations of simple algebraic groups. More precisely, we prove that if G is a simply connected simple linear algebraic group and φ : G → GL(V ) is a non-trivial irreducible repres ...
2021
, ,
The first step in the construction of a regression model or a data-driven analysis, aiming to predict or elucidate the relationship between the atomic-scale structure of matter and its properties, involves transforming the Cartesian coordinates of the atom ...
AMER CHEMICAL SOC2021
,
In the GW approximation, the screened interaction W is a nonlocal and dynamical potential that usually has a complex frequency dependence. A full description of such a dependence is possible but often computationally demanding. For this reason, it is still ...