Résumé
En mathématiques, et en particulier dans la théorie des algèbres de Lie, le groupe de Weyl d'un système de racines , nommé ainsi en hommage à Hermann Weyl, est le sous-groupe du groupe d'isométries du système de racines engendré par les réflexions orthogonales par rapport aux hyperplans orthogonaux aux racines. Le système de racines de est constitué des sommets d'un hexagone régulier centré à l'origine. Le groupe complet des symétries de ce système de racines est par conséquent le groupe diédral d'ordre 12. Le groupe de Weyl est engendré par les réflexions à travers les droites bissectant les paires de côtés opposés de l'hexagone ; c'est le groupe diédral d'ordre 6. Le groupe de Weyl d'une algèbre de Lie ou d'un groupe de Lie semi-simple, d'un semi-simple, etc. est le groupe de Weyl du système de racines de ce groupe ou de cette algèbre. Enlever les hyperplans définis par les racines de découpe l'espace euclidien en un nombre fini de régions ouvertes, appelées les chambres de Weyl. Celles-ci sont permutées par l'action sur le groupe de Weyl, et un théorème établit que cette action est simplement transitive. En particulier, le nombre de chambres de Weyl est égal à l'ordre du groupe de Weyl. Tout vecteur v différent de zéro divise l'espace euclidien en deux demi-espaces bordant l'hyperplan orthogonal à v, nommés et . Si v appartient à une certaine chambre de Weyl, aucune racine ne se trouve dans , donc chaque racine se trouve dans ou , et si se trouve dans l'un d'eux, alors se trouve dans l'autre. Ainsi, constitué d'exactement la moitié des racines de . Bien sûr, dépend de v, mais il ne change pas si v reste dans la même chambre de Weyl. La base du système de racines qui respecte le choix de est l'ensemble des racines simples dans , i.e., les racines qui ne peuvent pas être écrites comme une somme de deux racines dans . Ainsi, les chambres de Weyl, l'ensemble et la base en déterminent un autre, et le groupe de Weyl agit simplement transitivement dans chaque cas.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.