**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Theory of relativity

Summary

The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.
The theory transformed theoretical physics and astronomy during the 20th century, superseding a 200-year-old theory of mechanics created primarily by Isaac Newton. It introduced concepts including 4-dimensional spacetime as a unified entity of space and time, relativity of simultaneity, kinematic and gravitational time dilation, and length contraction. In the field of physics, relativity improved the science of elementary pa

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (45)

Loading

Loading

Loading

Related concepts (135)

General relativity

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current des

Albert Einstein

'Albert Einstein' (ˈaɪnstaɪn ; ˈalbɛʁt ˈʔaɪnʃtaɪn; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely held to be one of the great

Physics

Physics is the natural science of matter, involving the study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. Phy

Related people (4)

, , ,

Related units (3)

Related courses (52)

PHYS-427: Relativity and cosmology I

Introduce the students to general relativity and its classical tests.

PHYS-106(h): General physics : thermodynamics

Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de prévoir quantitativement les conséquences de ces phénomènes avec des outils théoriques appropriés.

PHYS-324: Classical electrodynamics

The goal of this course is the study of the physical and conceptual consequences of Maxwell equations.

Related lectures (94)

, ,

2008

We are interested in the well posedness of quasilinear partial differential equations of order two. Motivated by the study of the Einstein equation in relativity theory, there are a number of works dedicated to the local well-posedness issue for the quasilinear wave equation. We will focus on local well-posedness for the wave equation ; more precisely we are looking at the smallest Sobolev index such that the local well-posedness holds true for initial data in this space. In 2005, D. Tataru and Hart. F. Smith provided the current best upper bound for the smallest index in low dimension. In 1998, Hans Lindblad constructed a counter example for s=3 in dimension three, thus revealing the sharpness of Tataru and Smith's criteria in this dimension. Here, our goal is to obtain sharp counterexamples to local well-posedness for quasilinear wave equations of geometric character. First, we check how the construction by Lindblad translates to dimension two. Next, we shall try to see if a similar breakdown result applies to the vanishing mean curvature problem in Minkowski space. Finally, as a more long term goal, we may try to find explicit singular solutions of this problem, starting with smooth data, by following the constructions of Krieger-Schlag-Tataru.