**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# EXISTENCE OF AN UNBOUNDED NODAL HYPERSURFACE FOR SMOOTH GAUSSIAN FIELDS IN DIMENSION d >= 3

Abstract

For the Bargmann-Fock field on R-d with d >= 3, we prove that the critical level l(c) (d) of the percolation model formed by the excursion sets {f >= l} is strictly positive. This implies that for every l sufficiently close to 0 (in particular for the nodal hypersurfaces corresponding to the case l = 0), {f = l} contains an unbounded connected component that visits "most" of the ambient space. Our findings actually hold for a more general class of positively correlated smooth Gaussian fields with rapid decay of correlations. The results of this paper show that the behavior of nodal hypersurfaces of these Gaussian fields in R-d for d >= 3 is very different from the behavior of nodal lines of their 2-dimensional analogues.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (1)

Related concepts (18)

Moduli of algebraic curves

In algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on the restrictions applied to the classes of algebraic curves considered, the corresponding moduli problem and the moduli space is different. One also distinguishes between fine and coarse moduli spaces for the same moduli problem.

Moduli space

In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth algebraic curves of a fixed genus) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space.

Proj construction

In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory. In this article, all rings will be assumed to be commutative and with identity. Let be a graded ring, whereis the direct sum decomposition associated with the gradation.

Classical Serre-Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multipl ...