En informatique et en logique, un système formel est dit complet au sens de Turing ou Turing-complet (par calque de l’anglais Turing-complete) s’il possède un pouvoir expressif au moins équivalent à celui des machines de Turing. Dans un tel système, il est donc possible de programmer n'importe quelle machine de Turing.
Cette notion est rendue pertinente par la thèse de Church, qui postule l’existence d’une notion naturelle de calculabilité. Ainsi, le pouvoir expressif des machines de Turing coïncide avec celui des fonctions récursives, du lambda calcul, ou encore des machines à compteurs.
Bien que certains modèles de calcul, appelés des hypercalculs, soient strictement plus expressifs que les machines de Turing, ces modèles sont des objets de spéculation (requérant par exemple d’effectuer une infinité d’opérations, ou de calculer sur l’ensemble des nombres réels) et l’on ignore s’ils sont physiquement réalisables. Dans ces conditions, la thèse de Church conjecture l’universalité du modèle de calcul des machines de Turing : tout système Turing-complet serait en fait équivalent aux machines de Turing.
De même qu'un modèle de calcul, un langage informatique est dit Turing-complet s'il permet de représenter toutes les fonctions calculables au sens de Turing et Church (nonobstant la finitude de la mémoire des ordinateurs).
Certains auteurs prennent cette propriété pour définition d’un langage de programmation, mais d'autres définitions peuvent être choisies.
Les langages de programmation usuels (C, Java...) sont Turing-complets car ils possèdent tous les ingrédients nécessaires à la simulation d'une machine de Turing universelle (compter, comparer, lire, écrire, etc.). Le langage C++ est également Turing-complet, et le sous-ensemble permettant la programmation générique (templates) l'est aussi.
Le langage SQL, à l'origine non complet au sens de Turing, l'est devenu avec la norme SQL:1999 lui permettant d'écrire des requêtes récursives.
Le langage LaTeX (issus du TeX), destiné à la composition de documents, est également Turing-complet.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|L'animation illustre une machine impossible : il n'y a pas de machine qui lit n'importe quel code source d'un programme et dit si son exécution termine ou non. En théorie de la calculabilité, le problème de l'arrêt est le problème de décision qui détermine, à partir d'une description d'un programme informatique, et d'une entrée, si le programme s'arrête avec cette entrée ou non.
Un ordinateur est un système de traitement de l'information programmable tel que défini par Alan Turing et qui fonctionne par la lecture séquentielle d'un ensemble d'instructions, organisées en programmes, qui lui font exécuter des opérations logiques et arithmétiques. Sa structure physique actuelle fait que toutes les opérations reposent sur la logique binaire et sur des nombres formés à partir de chiffres binaires.
En informatique théorique, une machine de Turing est un modèle abstrait du fonctionnement des appareils mécaniques de calcul, tel un ordinateur. Ce modèle a été imaginé par Alan Turing en 1936, en vue de donner une définition précise au concept d’algorithme ou de « procédure mécanique ». Il est toujours largement utilisé en informatique théorique, en particulier dans les domaines de la complexité algorithmique et de la calculabilité.
We will give an overview of the field of Artificial Life (Alife). We study questions such as emergence of complexity, self-reproduction, evolution, both through concrete models and through mathematica
This course constitutes an introduction to theory of computation. It discusses the basic theoretical models of computing (finite automata, Turing machine), as well as, provides a solid and mathematica
Introduit la complexité computationnelle, les problèmes de décision, la complexité quantique et les algorithmes probabilistes, y compris les problèmes dures au NP et les problèmes complets au NP.
Explore les systèmes de régulation classiques, les degrés de liberté polynomiaux, les modifications du modèle servo et l'ajustement du système grâce à la simplification et à la facturation zéro.
Le centre d’art contemporain de La Chaux-de-Fonds a pour objectif d’activer ponctuellement le quartier situé dans la partie sud du chemin de fer et de compléter l’offre artistique qui parsème la ville. Cette cité industrielle au dessein patrimonial est per ...
Interactive oracle proofs (IOPs) are a proof system model that combines features of interactive proofs (IPs) and probabilistically checkable proofs (PCPs). IOPs have prominent applications in complexity theory and cryptography, most notably to constructing ...
SPRINGER INTERNATIONAL PUBLISHING AG2022
This paper studies the expressive power of graph neural networks falling within the message-passing framework (GNNmp). Two results are presented. First, GNNmp are shown to be Turing universal under sufficient conditions on their depth, width, node attribut ...