**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Electric dipole moment

Summary

The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-meter (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.
Theoretically, an electric dipole is defined by the first-order term of the multipole expansion; it consists of two equal and opposite charges that are infinitesimally close together, although real dipoles have separated charge.
Often in physics the dimensions of a massive object can be ignored and can be treated as a pointlike object, i.e. a point particle. Point particles with electric charge are referred to as point charges. Two point charges, one with charge +q and the other one with charge −q separated by a distance d, constitute an electric dipole (a simple case of an electric multipole). For this case, the electric dipole moment has a magnitude and is directed from the negative charge to the positive one. Some authors may split d in half and use s = d/2 since this quantity is the distance between either charge and the center of the dipole, leading to a factor of two in the definition.
A stronger mathematical definition is to use vector algebra, since a quantity with magnitude and direction, like the dipole moment of two point charges, can be expressed in vector form where d is the displacement vector pointing from the negative charge to the positive charge. The electric dipole moment vector p also points from the negative charge to the positive charge. With this definition the dipole direction tends to align itself with an external electric field (and note that the electric flux lines produced by the charges of the dipole itself, which point from positive charge to negative charge then tend to oppose the flux lines of the external field). Note that this sign convention is used in physics, while the opposite sign convention for the dipole, from the positive charge to the negative charge, is used in chemistry.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (533)

Related concepts (20)

Related courses (32)

Related MOOCs (5)

Related people (61)

Related units (9)

Related lectures (247)

Polarizability

Polarizability usually refers to the tendency of matter, when subjected to an electric field, to acquire an electric dipole moment in proportion to that applied field. It is a property of all matter, considering that matter is made up of elementary particles which have an electric charge, namely protons and electrons. When subject to an electric field, the negatively charged electrons and positively charged atomic nuclei are subject to opposite forces and undergo charge separation.

Toroidal moment

In electromagnetism, a toroidal moment is an independent term in the multipole expansion of electromagnetic fields besides magnetic and electric multipoles. In the electrostatic multipole expansion, all charge and current distributions can be expanded into a complete set of electric and magnetic multipole coefficients. However, additional terms arise in an electrodynamic multipole expansion. The coefficients of these terms are given by the toroidal multipole moments as well as time derivatives of the electric and magnetic multipole moments.

Electron electric dipole moment

The electron electric dipole moment de is an intrinsic property of an electron such that the potential energy is linearly related to the strength of the electric field: The electron's electric dipole moment (EDM) must be collinear with the direction of the electron's magnetic moment (spin). Within the Standard Model of elementary particle physics, such a dipole is predicted to be non-zero but very small, at most 10−38 e⋅cm, where e stands for the elementary charge.

PHYS-201(d): General physics: electromagnetism

The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.

PHYS-114: General physics: electromagnetism

The course first develops the basic laws of electricity and magnetism and illustrates the use in understanding various electromagnetic phenomena.

PHYS-201(c): General physics : electromagnetism

Introduction à la mécanique des fluides, à l'électromagnétisme et aux phénomènes ondulatoires

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Applications

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

, , , , , , , , ,

Explores electric dipoles in uniform fields, torque, dipole moment, Debye concept, molecular electric properties, and field dependencies on distance.

Explores the response of various objects to electric fields, the concept of capacitance, and its applications in technical devices.

Explores the electric field of a dipole moment and the concept of bound charges in a dielectric.

The pyroresistive response of conductive polymer composites (CPCs) has attracted much interest because of its potential applications in many electronic devices requiring a significant responsiveness to changes in external physical parameters such as temper ...

Elison de Nazareth Matioli, Alessandro Floriduz, Zheng Hao

In this work, we present a concept that leverages the strong piezoelectric polarization field in InGaN, which counteracts the external electric field at reverse bias. We show that despite the smaller InGaN band-gap and lower critical electric field, its st ...

2024Nicola Marzari, Lorenzo Bastonero

Infrared and Raman spectroscopies are ubiquitous techniques employed in many experimental laboratories, thanks to their fast and non-destructive nature able to capture materials' features as spectroscopic fingerprints. Nevertheless, these measurements freq ...