Summary
A triode is an electronic amplifying vacuum tube (or thermionic valve in British English) consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode (Fleming valve), the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention founded the electronics age, making possible amplified radio technology and long-distance telephony. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the pleasantly (warm) distorted sound of tube-based electronics. The name "triode" was coined by British physicist William Eccles some time around 1920, derived from the Greek τρίοδος, tríodos, from tri- (three) and hodós (road, way), originally meaning the place where three roads meet. Before thermionic valves were invented, Philipp Lenard used the principle of grid control while conducting photoelectric experiments in 1902. The first vacuum tube used in radio was the thermionic diode or Fleming valve, invented by John Ambrose Fleming in 1904 as a detector for radio receivers. It was an evacuated glass bulb containing two electrodes, a heated filament (cathode) and a plate (anode). Triodes came about in 1906 when American engineer Lee De Forest and Austrian physicist Robert von Lieben independently patented tubes that added a third electrode, a control grid, between the filament and plate to control current. Von Lieben's partially-evacuated three-element tube, patented in March 1906, contained a trace of mercury vapor and was intended to amplify weak telephone signals.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.