**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Combinatorial group theory

Summary

In mathematics, combinatorial group theory is the theory of free groups, and the concept of a presentation of a group by generators and relations. It is much used in geometric topology, the fundamental group of a simplicial complex having in a natural and geometric way such a presentation.
A very closely related topic is geometric group theory, which today largely subsumes combinatorial group theory, using techniques from outside combinatorics besides.
It also comprises a number of algorithmically insoluble problems, most notably the word problem for groups; and the classical Burnside problem.
See for a detailed history of combinatorial group theory.
A proto-form is found in the 1856 icosian calculus of William Rowan Hamilton, where he studied the icosahedral symmetry group via the edge graph of the dodecahedron.
The foundations of combinatorial group theory were laid by Walther von Dyck, student of Felix Klein, in the early 1880s, who gave the first systematic study of groups by generators and relations.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (9)

Related lectures (2)

Related concepts (9)

MATH-337: Combinatorial number theory

This is an introductory course to combinatorial number theory. The main objective of this course is to learn how to use combinatorial, probabilistic, and analytic methods to solve problems in number t

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

MATH-535: Topics in algebraic geometry

This course is aimed to give students an introduction to the theory of algebraic curves and surfaces. In particular, it aims to develop the students' geometric intuition and combined with the basic al

Combinatorial Group Theory

Introduces combinatorial group theory, emphasizing group presentations, normal subgroups, and group quotients.

Real Analysis: Sequences and Limits

Introduces the fundamentals of real analysis, emphasizing sequences and limits.

Hyperbolic group

In group theory, more precisely in geometric group theory, a hyperbolic group, also known as a word hyperbolic group or Gromov hyperbolic group, is a finitely generated group equipped with a word metric satisfying certain properties abstracted from classical hyperbolic geometry. The notion of a hyperbolic group was introduced and developed by . The inspiration came from various existing mathematical theories: hyperbolic geometry but also low-dimensional topology (in particular the results of Max Dehn concerning the fundamental group of a hyperbolic Riemann surface, and more complex phenomena in three-dimensional topology), and combinatorial group theory.

Combinatorial group theory

In mathematics, combinatorial group theory is the theory of free groups, and the concept of a presentation of a group by generators and relations. It is much used in geometric topology, the fundamental group of a simplicial complex having in a natural and geometric way such a presentation. A very closely related topic is geometric group theory, which today largely subsumes combinatorial group theory, using techniques from outside combinatorics besides.

Presentation of a group

In mathematics, a presentation is one method of specifying a group. A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators. We then say G has presentation Informally, G has the above presentation if it is the "freest group" generated by S subject only to the relations R. Formally, the group G is said to have the above presentation if it is isomorphic to the quotient of a free group on S by the normal subgroup generated by the relations R.