Concept

Young's interference experiment

Related concepts (12)
Fraunhofer diffraction
In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance (a distance satisfying Fraunhofer condition) from the object (in the far-field region), and also when it is viewed at the focal plane of an imaging lens. In contrast, the diffraction pattern created near the diffracting object and (in the near field region) is given by the Fresnel diffraction equation.
Arago spot
In optics, the Arago spot, Poisson spot, or Fresnel spot is a bright point that appears at the center of a circular object's shadow due to Fresnel diffraction. This spot played an important role in the discovery of the wave nature of light and is a common way to demonstrate that light behaves as a wave (for example, in undergraduate physics laboratory exercises). The basic experimental setup requires a point source, such as an illuminated pinhole or a diverging laser beam.
Corpuscular theory of light
In optics, the corpuscular theory of light states that light is made up of small discrete particles called "corpuscles" (little particles) which travel in a straight line with a finite velocity and possess impetus. This was based on an alternate description of atomism of the time period. Isaac Newton laid the foundations for this theory through his work in optics. This early conception of the particle theory of light was an early forerunner to the modern understanding of the photon.
François Arago
Dominique François Jean Arago (Domènec Francesc Joan Aragó), known simply as François Arago (fʁɑ̃swa aʁaɡo; Catalan: Francesc Aragó, fɾənˈsɛsk əɾəˈɣo; 26 February 1786 - 2 October 1853), was a French mathematician, physicist, astronomer, freemason, supporter of the Carbonari revolutionaries and politician. Arago was born at Estagel, a small village of 3,000 near Perpignan, in the département of Pyrénées-Orientales, France, where his father held the position of Treasurer of the Mint.
Wave–particle duality
Wave–particle duality is the concept in quantum mechanics that quantum entities exhibit both particle and a wave properties according to the experimental circumstances. It expresses the inability of the classical concepts "particle" or "wave" to fully describe the behaviour of quantum-scale objects. As Albert Einstein wrote: It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a new kind of difficulty.
Double-slit experiment
In modern physics, the double-slit experiment demonstrates that light and matter can satisfy the seemingly-incongruous classical definitions for both waves and particles, which is considered evidence for the fundamentally probabilistic nature of quantum mechanics. This type of experiment was first performed by Thomas Young in 1801, as a demonstration of the wave behavior of visible light. At that time it was thought that light consisted of either waves or particles.
Diffraction
Diffraction is the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.
Wave interference
In physics, interference is a phenomenon in which two coherent waves are combined by adding their intensities or displacements with due consideration for their phase difference. The resultant wave may have greater intensity (constructive interference) or lower amplitude (destructive interference) if the two waves are in phase or out of phase, respectively. Interference effects can be observed with all types of waves, for example, light, radio, acoustic, surface water waves, gravity waves, or matter waves as well as in loudspeakers as electrical waves.
Coherence (physics)
In physics, coherence expresses the potential for two waves to interfere. Two monochromatic beams from a single source always interfere. Physical sources are not strictly monochromatic: they may be partly coherent. Beams from different sources are mutually incoherent. When interfering, two waves add together to create a wave of greater amplitude than either one (constructive interference) or subtract from each other to create a wave of minima which may be zero (destructive interference), depending on their relative phase.
Christiaan Huygens
Christiaan Huygens, Lord of Zeelhem, (ˈhaɪɡənz , USˈhɔɪɡənz , ˈkrɪstijaːn ˈɦœyɣə(n)s; also spelled Huyghens; Hugenius; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor who is regarded as a key figure in the Scientific Revolution. In physics, Huygens made seminal contributions to optics and mechanics, while as an astronomer he studied the rings of Saturn and discovered its largest moon, Titan.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.